Заряд, модуль которого равен 8,4 мкКл, создаёт электростатическое поле на пластинах плоского конденсатора. Напряжение между его пластинами равно 12 В. Чему равна ёмкость конденсатора?
Кинематический подход. Горизонтальная составляющая Vx вектора скорости неизменна и равна начальной горизонтальной скорости V0: Vx = V0. Скорость в момент падения V слагается из горизонтальной Vx и вертикальной Vy: V^2 = Vx^2 + Vy^2 откуда Vy^2 = V^2 - Vx^2 = V^2 - V0^2. Время падения t0 находим из соотношения: g = Vy/t0 => t0 = Vy/g = sqrt(V^2 - V0^2) Начальную высоту определяем из h0 = gt0^2/2 h0 = gVy^2/(2g^2) = (V^2 - V0^2)/(2g) = 1.8 м = 18 дм
Динамический подход. Возрастание кинетической энергии T - T0 = mV^2/2 - mV0^2/2 есть результат работы силы тяжести: mgh0 = mV^2/2 - mV0^2/2, откуда h0 = (V^2 - V0^2)/(2g) = (100 - 64)/20 = 1.8 м = 18 дм
Траектория полёта симметрична. Вертикальная составляющая скорости за 1 секунду до конца полёта по модулю равна вертикальной составляющей скорости в 1-ю секунду после начала полёта и направлена противоположно. Поэтому угол к горизонту за 1 секунду до конца полёта будет численно равен углу в 1-ю секунду полёта, взятому с обратным знаком. Вертикальная составляющая скорости в начале полёта равна V0*Sin(alpha), где alpha - угол броска, V0 - начальная скорость. Горизонтальная составляющая скорости есть величина постоянная и равна: Vx = V0*Cos(alpha) Закон изменения во времени вертикальной составляющей есть: Vy(t) = V0*Sin((alpha) - gt В первую секунду полёта Vy(1) = V0*Sin((alpha) - g*1 tg угла к горизонту в первую секунду полёта есть tg(alpha(1)) = Vy(1)/Vx = (V0*Sin(alpha) - g*1)/(V0*Cos(alpha)) = (10*0.866 - 10)/5 = - (8.66 - 10)/5 = -0.268 alpha(1) = arctg(-0.268) = -arctg(0.268) = -0.262 рад = -15 град Следовательно, угол за секунду до конца полёта есть alpha(t0 - 1) = - alpha(1) = 15 град
не знаю