Запишем уравнения равноускоренного движения тела в общем виде:x(t) = x0 +V0x*t+ax*t^2/2y(t) = y0 + V0y*t+ay*t^2/2Подставим условия нашей задачи:Начало координат поставим в точку бросания тела => x0=y0=0сопротивления воздуха нет => ax=0, ay = -g(в моих обозначениях это x- и y- составляющие ускорения)Vx=V0*cos45 ; Vy = V0*sin45 (в моих обозначениях это x- и y- составляющие скорости и начальная скорость)подставив в общие уравнения, получим.x(t) = V0*cos45*ty(t) = V0*sin45*t - g*t^2/2Теперь найдём дальность полёта из условия y(t1)=0, t1- время полёта до падения.0=V0*sin45*t1 - g*t1^2/2; первое решение t1=0, второе - t1 =2*V0*sin45/g ~ 2.828 c (два корня из двух).Дальность полёта есть x(t1) = V0*cos45*2*V0*sin45/g = 40 мВремя полёта есть t1/2 в силу симметрии траектории = (корень из 2 секунд)
Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений
Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида
для волны в пространстве любой размерности (например, в трехмерном пространстве)
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.
То есть, для колебательного процесса (см. выше) фаза (полная) для волны в одномерном пространстве для волны в трехмерном пространстве или пространстве любой другой размерности:
,
где — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2 радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция
Объяснение:
Запишем уравнения равноускоренного движения тела в общем виде:x(t) = x0 +V0x*t+ax*t^2/2y(t) = y0 + V0y*t+ay*t^2/2Подставим условия нашей задачи:Начало координат поставим в точку бросания тела => x0=y0=0сопротивления воздуха нет => ax=0, ay = -g(в моих обозначениях это x- и y- составляющие ускорения)Vx=V0*cos45 ; Vy = V0*sin45 (в моих обозначениях это x- и y- составляющие скорости и начальная скорость)подставив в общие уравнения, получим.x(t) = V0*cos45*ty(t) = V0*sin45*t - g*t^2/2Теперь найдём дальность полёта из условия y(t1)=0, t1- время полёта до падения.0=V0*sin45*t1 - g*t1^2/2; первое решение t1=0, второе - t1 =2*V0*sin45/g ~ 2.828 c (два корня из двух).Дальность полёта есть x(t1) = V0*cos45*2*V0*sin45/g = 40 мВремя полёта есть t1/2 в силу симметрии траектории = (корень из 2 секунд)