Студент от начала состава вглубь него несколько десятков метров. Значит, в тот момент времени, когда он увидел в окне окончание проезжаемого моста, т.е. через секунд от начала отсчёта времени – нос электрички уже был высунут за пределы моста на эти самые несколько десятков метров. Т.е. понятно, что нос электрички достиг окончания моста МЕНЕЕ ЧЕМ ЗА секунд!
В то же время, понятно, что в самом начале отсчёта времени – студент находился вприжимку к носу электрички (внутри неё), а значит, она начала въезжать на мост как раз в начале отсчёта времени.
Теперь, рассчитаем задачу строго, по законам физики:
Согласно принципу относительности Галилея: «для того, чтобы найти вектор скорости тела относительно земли, нужно к вектору его скорости относительно транспорта прибавить вектор скорости транспорта».
В частности, в случае движения вдоль одной линии, принцип Галилея упрощается: «для того, чтобы найти проекцию скорости тела относительно земли, нужно к проекции его скорости относительно транспорта прибавить проекцию скорости транспорта».
Электричка движется вперёд со скоростью км/ч км/мин км/мин.
Студент относительно электрички движется НАЗАД (!) со скоростью км/ч км/мин.
Скорость студента относительно земли равна алгебраической сумме проекций км/мин.
Как следует из условия, в начале отсчёта времени студент находился точно на уровне начала моста, а в конце отсчёта времени – точно на уровне конца моста. Отсюда следует, что ровно за секунд минут, студент относительно земли переместился точно на длину моста. Найдём длину моста км/мин мин км м м .
Для ответа на поставленный в задаче вопрос нужно понять, в чём заключается этот вопрос. Взглянем на чертёж, приложенный к задаче. Из него легко понять, что от того момента времени, когда первый (!) вагон электрички начал въезжать на мост до того момента, как последний (!) вагон выехал с моста – всё это время электричка находилась на мосту. А значит за время, пока электричка находилась на мосту, она проехала ДВОЙНУЮ длину моста м .
Чтобы найти время в течение которого ВСЯ электричка проезжала по мосту, разделим путь, который она проделала за это время на её скорость:
сек сек сек сек .
О т в е т : полное время нахождения электрички на мосту, т.е., когда хотя бы какая-то её часть находилась на мосту, это и будет время, в течение которого электричка проехала мост. Это время сек .
На трубу действует 3 силы: F1 - реакция опоры со стороны 1 человека, направлена вверх F2 - реакция опоры со стороны 2 человека, направлена вверх gm - сила тяжести, направлена вниз Задача на условие равновесия, их два 1) равнодействующая всех сил приложенных к телу должна равняться нулю, т. е. F1 + F2 = gm (1) 2) алгебраическая сумма моментов си относительно выбранной оси вращения также должна равняться нулю Выберем ось вращения совпадающую с точкой приложения силы F1, тогда имеем 0,25*gm = F2*1,5 (2) Делим первое уравнение на второе: 1/0,25 = F1/(F2*1,5) + F2/(F2*1,5) 4 = F1/(F2*1,5) + 1/1,5 4 = 2/3 * F1/F2 + 2/3 4 - 2/3 = 2/3 * F1/F2 F1/F2 = 9/3 : 2/3 = 4,5
m=0,1 кг
v=30 м/с
Ек-?
Решение
Ек=m*v^2/2
Ek=0,1*(30)^2/2=45 Дж
ответ :Ек=45 Дж