1.Поднимите мячик на высоту и отпустите его. Ударившись об пол, он подскочит и потом опять упадет на пол, и опять подскочит. Но с каждым разом высота его подъема будет меньше и меньше, пока мяч не замрет неподвижно на полу. Когда мяч неподвижен и находится на высоте, он обладает только потенциальной энергией. Когда начинается падение, у него появляется скорость, и значит, появляется кинетическая энергия. Но по мере падения высота, с которой началось движение, становится меньше и, соответственно, становится меньше его потенциальная энергия, т.е. она превращается в кинетическую. Если провести расчёты, то выяснится, что значения энергии равны, а это означает, что закон сохранения энергии при таких условиях выполняется. Мяч движется в окружении воздуха и испытывает сопротивление с его стороны, пусть и небольшое. И энергия затрачивается на преодоление сопротивления.
2.Человеческий организм, как и все живые организмы, очень сложная система, в которой, согласно закону физики, происходит превращение и сохранение энергии. Основным источником энергии для человека является пища. Эта энергия, выделяется при расщеплении продуктов питания и расходуется на построение клеток, поддержание жизнедеятельности нашего организма, преобразуется в механическую энергия движения и другие действия, в тепловую энергию. Организм человека можно сравнить с двигателем, «топливом» для которого являются продукты питания. 3.Применим закон сохранения энергии и к движению жидкости и газа. Из этого закона следует, что в местах потока жидкости (или газа), где скорость ее движения, а вместе с ней и кинетическая энергия меньше, потенциальная энергия должна быть больше. На основе закона сохранения энергии можно прийти к выводу: давление текущей жидкости больше в тех местах потока, в которых скорость ее движения меньше, и, наоборот, в тех местах, где скорость больше, давление меньше. Эта закономерность носит название закона Бернулли. Справедлив этот закон как для жидкостей, так и для газов. И наблюдается, например, при движении жидкостей по трубам.
4. Возникновение подъемной силы, действующей на крылья самолета ,является следствием закона сохранения энергии, находит широкое применение в различных устройствах: пульверизаторе, водоструйном насосе, карбюраторе.( Каждое крыло у самолета в сечении имеет несимметричную форму. Поэтому при движении самолета воздушный поток обтекает крыло так, что из-за разной скорости обтекания крыла сверху и снизу давления под крылом и над крылом также оказываются различными. Давление над крылом оказывается меньше давления над крылом. Благодаря этому и возникает сила, поднимающая самолет в воздух.)
1)В проводнике всегда имеются свободные носители заряда, это его почти неотъемлемое свойство. В полупроводнике эти носители вот-вот появились бы, но "в норме" их нет; они появляются при определённых условиях, при добавлении каких-то примесей (легировании) и т. п.
Таким образом, образованием и исчезновением носителей полупроводника можно управлять технологически.
Например, соединив два куска проводника разного легирования, можно изготовить диод, который проводит ток только в одном направлении; соединив три куска, можно изготовить транзистор, в котором ток в одном куске управляет прохождением тока через два других (электронный вентиль) ; можно изготовить фотоэлемент, который под воздействием света будет менять свою проводимость и так далее.
2)При повышении температуры электролита возрастает средняя кинетическая энергия теплового движения молекул, увеличивается и число пар ионов, образующихся в единицу времени. Из-за увеличения концентрации ионов при повышении температуры значение электрического сопротивления электролита с повышением температуры уменьшается.
3)Чтобы убедиться в том, что в кольцевом сверхпроводнике действительно устанавливается неизменный ток, можно проверить неизменность магнитного поля, созданного сверхпроводником.
4)Дырочная проводимость (р-проводимость) — Проводимость полупроводника, в котором основными носителями заряда являются дырки. Такие полупроводники получаются при добавлении к чистому полупроводнику акцепторных примесей (см. Акцептор), что значительно увеличивает концентрацию дырок в полупроводнике.
5)Акцепторная примесь - (от лат. acceptor принимающий) примесь в полупроводнике, ионизация которой сопровождается захватом электронов из валентной зоны или с донорной примеси. Типичный пример акцепторной примеси - атомы элементов III группы (В, Al, Ga, In) в элементарных полупроводниках.
6)Какую примесь надо ввести в полупроводник, чтобы получить полупроводник n-типа? Полупроводник n-типа означает, что основные носители зарядов отрицательны (n - negativ), значит нужна примесь, которая "даёт" электроны, например, мышьяк As. Тот, кто даёт электроны - донор, как и тот кто кровь даёт.
7)В контакте двух проводников n- и p-типов происходит диффузия основных носителей заряда из одного проводника в другой, получится п-р или р-п переход.
8)При использовании p-n-перехода в реальных полупроводниковых приборах к нему может быть приложено внешнее напряжение. Величина и полярность этого напряжения определяют поведение перехода и проходящий через него электрический ток. Если положительный полюс источника питания подключается к p-области, а отрицательный – к n-области, то включение p-n-перехода называют прямым. При изменении указанной полярности включение p-n-перехода называют обратным.
При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю, рисунок 2. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.
9)Ионная проводимость - это проводимость водных растворов или расплавов электролитов, которая осуществляется ионами. Электролиз - процесс выделения на электроде вещества, связанного с окислительно-восстановительными реакциями.
10)Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации). Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).
Объяснение:
Бро, пыталась, честно!