Положите на стол кусок картона и воткните в него две булавки в нескольких сантиметрах друг от друга. Между этими булавками воткните ещё две-три булавки так, чтобы, глядя на одну из крайних, вы увидели только её, а остальные булавки были бы закрыты от нашего взгляда ею. Выньте булавки, приложите линейку к следам в картоне от двух крайних булавок и проведите прямую. Как расположены следы от других булавок по отношению к этой прямой? Прямолинейностью распространения света пользуются при провешивании прямых линий на поверхности земли и под землей в метро, при определении расстояний на земле, на море и в воздухе. Когда контролируют прямолинейность изделий по лучу зрения, то опять-таки используют прямолинейность распространения света. Весьма вероятно, что и само понятие о прямой линии возникло из представления о прямолинейном распространении света. Если между глазом и каким-нибудь источником света поместить непрозрачный предмет, то источник света мы не увидим. Объясняется это тем, что в однородной среде свет распространяется по прямым линиям. Прямолинейное распространение света — факт, установленный ещё в глубокой древности. Об этом писал основатель геометрии Евклид (300 лет до нашей эры) . Прямолинейностью распространения света в однородной среде объясняется образование тени. Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на земле в солнечный день. Предметы, освещаемые точечными источниками света, например солнцем, отбрасывают четко очерченные тени. Карманный фонарик даёт узкий пучек света. Фактически о положении окружающих нас предметов в пространстве мы судим, подразумевая, что свет от обьекта попадает в наш глаз по прямолинейным траекториям. Наша ориентация во внешнем мире целиком основана на предположении о прямолинейном распространении света. Именно это допущение привело к представлению о световых лучах.
n1
f = qe = 1,6 × 10^-19 × 2 × 10^3 = 3,2 × 10^-16 н
n2
a = qed cosα = qed cos300° = qed cos(-60°) = qed cos60° = qed/2 = 5 × 10^-9 × 2 × 10^3 × 2 × 10^-1/2 = 10^4 × 10^-10 = 10^-6 дж = 1 мкдж
n3
c = q/u
u = ed
c = q/ed = 5 × 10^-9/(10^4 × 2 × 10^-4) = 2,5 × 10^-9 ф = 2,5 нф
n4
w1 = c1 (u1)^2/2 = 3 × 10^-6 × 100/2 = 1,5 × 10^-4 дж
w2 = (c1 + c2)(u2)^2/2
w2 = 5 × 10^-6 × (u2)^2/2
w2 = w1
5 × 10^-6 × (u2)^2/2 = 1,5 × 10^-4
(u2)^2 = 3 × 10^-4/5 × 10^-6
(u2)^2 = 60
u2 = 7,75 в
q = w
q = 1,5 × 10^-4 дж
ответ : 7,75 в ; 1,5 × 10^-4 дж