Екин=mv^2/2 = 0.14 кг*35^2 м/с/2=86 Дж
H=v/g=36/10=3,5 м
Епот=mgh=0.14*10*3,6=5 дж
2.Поскольку m = m₁=m₂, Δt = Δt₁=Δt₂, то количество теплоты определяется только удельной теплоемкостью тела.
Q₁ = с₁·m·Δt
Q₂ = с₂·m·Δt
c₁ = 920 Дж/(кг·°С) — удельная теплоемкость олова
c₂ = 250 Дж/(кг·°С) — удельная теплоемкость серебра
Поскольку с₂<c₁, то и Q₂<Q₁
То есть тела получат разное количество теплоты.
3.Наибольшей теплоемкостью будет обладать то тело, у которого скорость изменения температуры будет наименьшей.
Объяснение:
вроде
1)В проводнике всегда имеются свободные носители заряда, это его почти неотъемлемое свойство. В полупроводнике эти носители вот-вот появились бы, но "в норме" их нет; они появляются при определённых условиях, при добавлении каких-то примесей (легировании) и т. п.
Таким образом, образованием и исчезновением носителей полупроводника можно управлять технологически.
Например, соединив два куска проводника разного легирования, можно изготовить диод, который проводит ток только в одном направлении; соединив три куска, можно изготовить транзистор, в котором ток в одном куске управляет прохождением тока через два других (электронный вентиль) ; можно изготовить фотоэлемент, который под воздействием света будет менять свою проводимость и так далее.
2)При повышении температуры электролита возрастает средняя кинетическая энергия теплового движения молекул, увеличивается и число пар ионов, образующихся в единицу времени. Из-за увеличения концентрации ионов при повышении температуры значение электрического сопротивления электролита с повышением температуры уменьшается.
3)Чтобы убедиться в том, что в кольцевом сверхпроводнике действительно устанавливается неизменный ток, можно проверить неизменность магнитного поля, созданного сверхпроводником.
4)Дырочная проводимость (р-проводимость) — Проводимость полупроводника, в котором основными носителями заряда являются дырки. Такие полупроводники получаются при добавлении к чистому полупроводнику акцепторных примесей (см. Акцептор), что значительно увеличивает концентрацию дырок в полупроводнике.
5)Акцепторная примесь - (от лат. acceptor принимающий) примесь в полупроводнике, ионизация которой сопровождается захватом электронов из валентной зоны или с донорной примеси. Типичный пример акцепторной примеси - атомы элементов III группы (В, Al, Ga, In) в элементарных полупроводниках.
6)Какую примесь надо ввести в полупроводник, чтобы получить полупроводник n-типа? Полупроводник n-типа означает, что основные носители зарядов отрицательны (n - negativ), значит нужна примесь, которая "даёт" электроны, например, мышьяк As. Тот, кто даёт электроны - донор, как и тот кто кровь даёт.
7)В контакте двух проводников n- и p-типов происходит диффузия основных носителей заряда из одного проводника в другой, получится п-р или р-п переход.
8)При использовании p-n-перехода в реальных полупроводниковых приборах к нему может быть приложено внешнее напряжение. Величина и полярность этого напряжения определяют поведение перехода и проходящий через него электрический ток. Если положительный полюс источника питания подключается к p-области, а отрицательный – к n-области, то включение p-n-перехода называют прямым. При изменении указанной полярности включение p-n-перехода называют обратным.
При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю, рисунок 2. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.
9)Ионная проводимость - это проводимость водных растворов или расплавов электролитов, которая осуществляется ионами. Электролиз - процесс выделения на электроде вещества, связанного с окислительно-восстановительными реакциями.
10)Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации). Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).
Объяснение:
Бро, пыталась, честно!
1. Вычислить дефект массы, энергию связи и удельную энергию связи ядра 816О. Масса атома водорода m(11H) = 1,00783 а. е. м. ; масса нейтрона mn = 1,00867 а. е. м. ; масса атома кислорода m(816O) = 15,99492 а. е. м. ; Z = 8; А = 16.
Решение.
Дефект массы Δm ядра определяется по формуле
Δm = Zmp + (A − Z)mn − mя. (1)
Формулу (1) можно также записать в виде
Δm = Zm11H + (A − Z)mn − ma. (2)
где ma − масса атома, дефект массы ядра которого определяется.
Подставляя в (2) числовые данные, получим
Δm = 8 × 1,00783 а. е. м. + (16 − 8) × 1,00867 а. е. м. − 15,99492 а. е. м. = 0,13708 а. е. м.
Энергия связи ядра определяется по формуле
Есв = с2Δm. (3)
Если дефект массы Δm выражать в а. е. м. , а энергию связи Есв в МэВ, то формула (3) примет вид
Есв = 931 × Δm. (4)
Подставляя в (4) числовые значения, получим
Есв = 931 × 0,13708 = 128 (МэВ) .
Удельная энергия связи εсв вычисляется по формуле
εсв = Есв/A. (5)
Проводя вычисления, получим
εсв = 128/16 = 8 (МэВ) .
ответ: Δm = 0,13708 а. е. м. ; Есв = 128 МэВ; εсв = = 8 (МэВ)
Объяснение: