Проще всего вначале вычислить не работу силы , действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сила давления газа, действуя на поршень с силой . согласно третьему закону ньютона . модуль силы, действующей со стороны газа на поршень, равен , где p - давление газа, а s - площадь поверхности поршня. пусть газ расширяется изобарно и поршень смещается в направлении силы на малое расстояние . так как давление газа постоянно, то работа газа равна: эту работу можно выразить через изменение объема газа. начальный его объем v1=sh1, а конечныйv2=sh2. поэтому где - изменение объема газа. при расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня .
Для простоты будем считать, что Земля равномерно вращается вокруг Солнца по окружности, в центре этой окружности находится Солнце. Тогда запишем второй закон Ньютона в проекции на ось, лежащей в плоскости указанной окружности и проходящей через центр Солнца. ma = F_гр, a - это центростремительное ускорение Земли, m - это масса Земли, a = (v^2/R), v - это скорость вращения Земли по круговой орбите, R - это искомое расстояние. F_гр - это сила, с которой Солнце притягивает Землю. F_гр = G*m*M/(R^2), где M - это масса Солнца, M = 1,98*10^30 кг G - это гравитационная постоянная, G = 6,67*10^(-11) Н*м^2/(кг^2). m*(v^2)/R = G*m*M/(R^2), (v^2)/R = G*M/(R^2), v^2 = G*M/R, v = длина_окружности/период_обращения = 2*п*R/T, T - период обращения Земли вокруг Солнца, (2*п*R/T)^2 = G*M/R, 4*(п^2)*(R^2)/(T^2) = G*M/R, 4*(п^2)*(R^3)/(T^2) = G*M, R^3 = G*M*(T^2)/(4*п^2); R = ∛( G*M*(T^2)/(4*п^2) ). п - математическая константа, п≈3,14.