1-Б 2-Г 3-Б 4-А 5-В 6-Б 7-Б 8-В 9-Б 10-Г
Объяснение:
2 .0,01 Н/см2 = 0,01*1Н/10^-4м2 = 100 Н/м2 = 100 Па
Дзержинск
ответ:г)100Па
5. Чем больше площадь, тем мешать давление.
7.Дано:
F=2 Н
S=0.01мм2
найти:
p=?
решение:
p=F/S
p= 2Н : 0,01 мм2=200 Па
ответ: p=200 Па
8.Находим сначала массу мрамора через его плотность и объем
m=P*F=2.700*6=16200кг
F=mg=16200*10=162000H
P=F/S=162000/1,5=108000Па=108 кПа
9.тяжёлый бетон (плотность 2200—2500 кг/м³
Давление ro*g*h = 230кПа ; Приняв плотность 2300, получим высоту 10м.
10.
p = mg/S
m =pS/g = 162000*1940/10=31428000 кг = 31.4 т
ОТВЕТ 31428000 кг = 31.4 т
Давление - есть масса, деленая на площадь.
Переведем кПа в килограммы: 162 кПа=162000 Па=16200 кг.
Значит, масса = P*S=162*10^2*1940=31 428 000 кг = 31 428 т.
ответ: Масса Останкинской башни - 31 428 тонн.
величина (векторная), равная произведению силы на время ее действия, мера воздействия силы на тело за данный промежуток времени (в поступательном движении).
Просто импульс (тела):
мера механического движения, величина (векторная), равная произведению массы этой точки (или тела) на её скорость и направленную так же, как вектор скорости.
3.Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.
При таком выборе нулевого уровня потенциальная энергия тела, находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:
Wp = mgh.
Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин, а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию
6.Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.