М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ksyusa41
ksyusa41
21.06.2022 19:23 •  Физика

Суда еритін металл жёне оларды ата​

👇
Открыть все ответы
Ответ:
двоищник3
двоищник3
21.06.2022

Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно.

 

Р е ш е н и е. Пусть первая бригада выполняет задание за х дней, вторая бригада – за у дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, а 1/у – второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение

12(1/х+ 1/у)=1

Из второго условия следует, что вторая бригада работала 15 дней, а первая - только 8 дней. Значит, второе уравнение имеет вид

8/х+15/у=1

Таким образом, имеем систему: 12/x+12/y=1, 8/x+15/y=1

Вычтем из второго уравнения первое, получим: 21/у=1 ? у=21. Тогда 12/х+12/21=1 ? 12/х=3/7 ? х=28.

О т в е т: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.

В бассейн проведены две трубы – подающая и отводящая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн, и за сколько времени через одну вторую трубу может осушиться полный бассейн?

Р е ш е н и е: Пусть V м3 – объем бассейна, х м3 /ч – производительность подающей трубы, у м3 /ч - отводящей. Тогда V/x ч – время, необходимое подающей трубе для заполнения бассейна, V/у ч – время, необходимое отводящей на осушение бассейна. По условию задачи

V/x- V/у=2.

Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V/3)(у-х), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:

В задаче необходимо найти V/х и V/у. Выделим в уравнениях комбинацию неизвестных V/х и V/у, записав систему в виде: V/x-V/y=2, V/(y-x)=24 или V/x-V/y=2, y/V-x/V=1/24

Вводя новые неизвестные V/х=а и V/у=b, получаем следующую систему: a-b=2, 1/b-1/a=1/24

Подставляя во второе уравнение выражение a=b+2, имеем уравнение относительно b:   1/b-1/(b+2)=1/24

решив которое найдем b1=6, b2=-8. Условию задачи удовлетворяют первый корень b1=6(ч). Из первого уравнения последней системы находим а=8(ч), т.е. первая труба наполняет бассейн за 8ч.

О т в е т: через первую трубу бассейн наполнится через 8 ч, через вторую трубу бассейн осушится через 6 ч.

4,6(19 оценок)
Ответ:
Brokenheart94
Brokenheart94
21.06.2022
У не нагруженной пружины расстояние между витками L₀ / (N-1) = L₀ / 39
Между 40 витками 39 промежутков.
Используем закон Гука
F = k*x = g*m
k(L - L₀) = g*m
L = g*m/k + L₀
Расстояние между витками станет равным L/(N-1) = g*m/k*((N-1)) + L₀/(N-1)
Вычислим на сколько увеличится расстояние между соседними витками
ΔL = L/(N-1) - L₀/(N-1) = g*m/k*((N-1)) + L₀/(N-1)- L₀/(N-1) = g*m/k*((N-1))
Между 25 и 12 витками 13 промежутков следовательно искомое расстояние будет равно ΔL₁ = 13 * g*m/k*((N-1)) = g*m/(3*k) = 
= 10 м/с² * 0,600 кг / (3* 40 Н/м) = 6 / 120 = 0,05 м = 5 см
4,6(99 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ