Измерение ускорения свободного падения с математического маятника Цель работы: научиться измерять ускорение свободного падения, используя формулу периода колебаний математического маятника. Приборы и материалы: штатив, шарик с прикрепленной к нему нитью, измерительная лента, секундомер (или часы с секундной стрелкой) . Порядок выполнения работы 1. Подвесьте к штативу шарик на нити длиной 30 см. 2. Измерьте время 10 полных колебаний маятника и вычислите его период колебаний. Результаты измерений и вычисления занесите в таблицу 13. 3. Пользуясь формулой периода колебаний математического маятника T = 2p, вычислите ускорение свободного падения по формуле: g = . 4. Повторите измерения, изменив длину нити маятника. 5. Вычислите относительную и абсолютную погрешность изменения ускорения свободного падения для каждого случая по формулам: dg = = + ; Dg = g•dg. Считайте, что погрешность измерения длины равна половине цены деления измерительной ленты, а погрешность измерения времени — цене деления секундомера. 6. Запишите значение ускорения свободного падения в таблицу 13 с учетом погрешности измерений.
по ф-ле Tомпсона
частота v=1/(2pi√(LC))
√C=1/(v2pi√L)
C=1/((v2pi)^2*L)
тогда
C1=1/((v1*2pi)^2*L)
C2=1/((v2*2pi)^2*L)
емкость сдвоенного конденсатора
С=С1+С2=1/((2pi)^2*L)*(1/v1^2+1/v2^2) (1)
частота с двойным конденсатором
v=1/(2pi√(LC))
v^2=1/((2pi)^2*LC))
подставим С из (1)
v^2=1/((2pi)^2*L)) * ((2pi)^2*L)*(1/v1^2+1/v2^2)
v^2= 1/v1^2+1/v2^2
из ф-лы видно , что квадрат частота равна сумме квадратов обратных величин частот при паралл.соедин.
подставим числа
v^2=1/20^2+1/30^2=(9+4)/3600=13/60^2
v=√13/60=0,06 кГц = 60 Гц