Площадь усиления каскада равна
П = Кср· fгр.в ,
П = 100 · 14· 103 = 1400· 103.
Рассчитаем данные широкополосного каскада с
низкочастотной корректирующей цепочкой RфСф, работающего на высокоомную нагрузку (Rг >R<Rн) и имеющего R = 1000 Ом, RН=106 Ом, допустимое падение
напряжения на Rф, равное Uф=6 В, и постоянную составляющую тока выходной цепи Iо=3 мА. Относительное усиление каскада Ун на низшей частоте fн = 20 Гц.Определим Rф и необходимый коэффициент низкочастотной коррекции b:
Rф = Uф / Iо ,
Rф = 6 /3 10-3 = 2000 Ом,
b = R / Rф ,
b = 1000 /2000 = 0,5
Если каскад предназначен для усиления гармонических сигналов, то
воспользуемся при его расчете семейством нормированных частотных характеристик для b = 0,5, приведенных на рисунок 1.81,а. Для того чтобы получить наилучшую результирующую характеристику, выберем на этом семействе характеристику с максимальным подъёмом в 1,2—1,5 раза больше заданного; такая характеристика соответствует m=0,9. По этой характеристике определим, что Yн=1,12 имеет место при Х=2,1, откуда найдем необходимые значения С и Сф:
С = Х / 6,28· f· Rн ,
С = 2,1 / 6,28 ·20· 106 = 0,0167·10-6 Ф = 0,0167 мкФ≈0,02 мкФ;
Сф = m·С·Rн / R = m ·Х / 6,28· fн ·R ,
Сф = 0,9· 2,1 / 6,28· 20· 1000 = 0,015 ·10-3 = 15 мкФ
Боровская модель водородоподобного атома (Z — заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро. Переход электрона с орбиты на орбиту сопровождается излучением или поглощением кванта электромагнитной энергии (hν).
Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: {\displaystyle m_{e}vr=n\hbar \ } m_{e}vr=n\hbar \ .
Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты {\displaystyle R_{n}} R_n и энергии {\displaystyle E_{n}} E_{n} находящегося на этой орбите электрона:
{\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};} {\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};}
Здесь {\displaystyle m_{e}} m_e — масса электрона, {\displaystyle Z} Z — количество протонов в ядре, {\displaystyle \varepsilon _{0}} \varepsilon _{0} — электрическая постоянная, {\displaystyle e} e — заряд электрона.
Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера в задаче о движении электрона в центральном кулоновском поле.
Радиус первой орбиты в атоме водорода R0=5,2917720859(36)⋅10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты {\displaystyle E_{0}=-13.6} E_{0}=-13.6 эВ представляет собой энергию ионизации атома водорода.