Дано:
Найти:
Решение:
Кота и доску можно рассматривать как единую систему. На них не действуют диссипативные силы, а значит энергия системы сохраняется . Возьмём два состояния системы кот-доска: в момент времени, когда кот и доска только начали движение (при условии, что их начальные скорости равны 0) и момент времени ровно через секунду. Тогда закон сохранения энергии:
Потенциальные энергии равны нулю, т.к. всё находится прямо на земле (полу) .
Но в первом состоянии скорости равны нулю. Тогда
Однако мы приняли, что , тогда ( имеет размерность , это не та размерность, которая получится при умножении ускорения на время, а - только численное значение, поэтому и дописываем размерность ).
Таким образом, получим:
<p>\frac{{m}_{к}\times {(|{a}_{к}|\frac{м}{с})}^{2}}{2} + \frac{{m}_{д}\times {(|{a}_{д}|\frac{м}{с})}^{2}}{2}=0 \: \vert : \frac{{m}_{к}}{2}\\1 \: \frac{{м}^{2} }{{с}^{2}} + 4{(|{a}_{д}|\frac{м}{с})}^{2} = 0 \\ |{a}_{д}|\frac{м}{с} = -0.25\frac{м}{с} \\ {a}_{д} = -0.25\frac{м}{{с}^{2}}" class="latex-formula" id="TexFormula14" src="https://tex.z-dn.net/?f=0%3D%5Cfrac%7B%7Bm%7D_%7B%D0%BA%7D%5Ctimes%20%7B%28%7Ba%7D_%7B%D0%BA%7Dt%29%7D%5E%7B2%7D%7D%7B2%7D%20%2B%20%5Cfrac%7B%7Bm%7D_%7B%D0%B4%7D%5Ctimes%20%7B%28%7Ba%7D_%7B%D0%B4%7Dt%29%7D%5E%7B2%7D%7D%7B2%7D%5C%5C%3C%2Fp%3E%3Cp%3E%5Cfrac%7B%7Bm%7D_%7B%D0%BA%7D%5Ctimes%20%7B%28%7C%7Ba%7D_%7B%D0%BA%7D%7C%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%29%7D%5E%7B2%7D%7D%7B2%7D%20%2B%20%5Cfrac%7B%7Bm%7D_%7B%D0%B4%7D%5Ctimes%20%7B%28%7C%7Ba%7D_%7B%D0%B4%7D%7C%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%29%7D%5E%7B2%7D%7D%7B2%7D%3D0%20%5C%3A%20%5Cvert%20%3A%20%5Cfrac%7B%7Bm%7D_%7B%D0%BA%7D%7D%7B2%7D%5C%5C1%20%5C%3A%20%20%5Cfrac%7B%7B%D0%BC%7D%5E%7B2%7D%20%7D%7B%7B%D1%81%7D%5E%7B2%7D%7D%20%20%20%2B%204%7B%28%7C%7Ba%7D_%7B%D0%B4%7D%7C%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%29%7D%5E%7B2%7D%20%3D%200%20%5C%5C%20%7C%7Ba%7D_%7B%D0%B4%7D%7C%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%20%3D%20-0.25%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%20%5C%5C%20%7Ba%7D_%7B%D0%B4%7D%20%3D%20-0.25%5Cfrac%7B%D0%BC%7D%7B%7B%D1%81%7D%5E%7B2%7D%7D" title="0=\frac{{m}_{к}\times {({a}_{к}t)}^{2}}{2} + \frac{{m}_{д}\times {({a}_{д}t)}^{2}}{2}\\</p><p>\frac{{m}_{к}\times {(|{a}_{к}|\frac{м}{с})}^{2}}{2} + \frac{{m}_{д}\times {(|{a}_{д}|\frac{м}{с})}^{2}}{2}=0 \: \vert : \frac{{m}_{к}}{2}\\1 \: \frac{{м}^{2} }{{с}^{2}} + 4{(|{a}_{д}|\frac{м}{с})}^{2} = 0 \\ |{a}_{д}|\frac{м}{с} = -0.25\frac{м}{с} \\ {a}_{д} = -0.25\frac{м}{{с}^{2}}">
Ускорение получилось отрицательным, потому что доска должна двигаться (или по крайней мере ускоряться) в противоположном направлению движения кота направлении.
6.Распишем формулы сначала для последовательного соединения резисторов
:
I=I1=I2=I3
U=U1+U2+U3
R=R1+R2+R3
Распишем формулы для параллельного соединения резисторов
:
U=U1=U2=U3
I=I1+I2+I3
R=R1*R2*R3/(R2*R3+R1*R3+R1*R2)
Первые 2 резисторы соединены последовательно, то есть сопротивление этих двух проводников будет равно:
R12=R1+R2
R12=2+3=5 (Ом)
Тогда, для того чтобы найти сопротивление всех резисторов используем формулу для последовательного соединения проводников
:
R=R12*R3/(R12+R3)
R=5*2,5/(5+2,5)= 12,5/7,5=1,6 (Ом)
Найдем напряжение на 3 резисторе, а поскольку напряжение при параллельном соединении одинакова на всех участках цепи, то U = U3 = U12
R=U/I
U=I*R
U3=R3*I3
U3=2,5*2=5 (B)
U3=U12=U
Поскольку на 1 и 2 резисторах сила тока будет одинаковой, то когда найдем силу тока для и 12, то найдем для первых двух резисторов:
I12=U12/R12
I12=5/5=1(A)
I=I1=I2=I12
P=I*U
P=I^2*R
P=U^2/R
Поскольку нам известна сила тока и сопротивление 1 резистора, то используем формулу I ^ 2 * R. Тогда Р равна:
P=I^2
P=1*2=2(Вт)
О: Р=2 Вт
Dans: 120÷78
s= 12089
0l_ hgop/69