М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gggg115gcgc
gggg115gcgc
15.11.2020 19:07 •  Физика

Решить эти . хоть которую знаете.буду ) 1. луч света падает на предел разделения воздуха - неизвестное вещество под углом 50 градусов. определить показатель преломления вещества, если отбит и преломлен лучи перпендикулярны друг к другу. 2. луч падает под углом 30 градусов на стеклянную пластинку с параллельными гранями. смещение луча, который вышел из пластинки 0,6 см. определить толщину пластинки. 3. светло какой длины надо направить на поверхность цезия, чтобы максимальная скорость фотоэлектронов представляла 2*10в 6 степени м/с?

👇
Ответ:
ГАТИНЫ
ГАТИНЫ
15.11.2020

3 задача:

 

дано:

А вых = 1.8 эВ

v = 2 Мм/с = 2*10^6 м/с

 

Е = hV - A вых = hc/гамма - А вых

Е = mv^2 /2

mv^2 /2 = hc/гамма - А вых

выражаем гамма:

гамма = hc/ (mv^2 /2 + А вых)

подставляем все значения:

гамма = 94.3 нм

 

ответ: гамма = 94.3 нм

4,4(94 оценок)
Открыть все ответы
Ответ:
isackanova
isackanova
15.11.2020
В первой четверти XX-го века получены экспериментальные свидетельства двойственности свойств материи: электромагнитное излучение проявляет свойства частиц (фотоэффект, комптоновское рассеяние, ...), а частицы демонстрируют волновые свойства (эффект Рамзауэра, туннельный эффект, ...).

Но свойства волн и частиц в известной степени противоположны.

Частицы Волны
Энергия и импульс локализованы Переносят энергию, распределенную по фронту волны
Сложение по правилу: частицы + частицы => больше частиц Интерференция лучей: больше в одном месте и меньше в другом
Отбрасывают резкую тень Огибают препятствия
При наличии щелей частица проходит через одну из них Проходят через любое число отверстий
Нет подходящих образов, чтобы представить существование волновых и корпускулярных свойств у одного объекта. Нельзя все свойства волн и все свойства частиц приписать одному объекту. Необходимо внести некоторые ограничения в применении к объектам микромира понятий классической физики. Корпускулярно-волновая двойственность свойств частиц, изучаемых в квантовой механике, приводит к тому, что в ряде случаев оказывается невозможным, в классическом смысле, одновременно характеризовать частицу ее положением в пространстве (координатами) и скоростью (или импульсом). В 1927 году немецкий физик Вернер Гейзенберг сформулировал принцип неопределенности, названный теперь его именем. Он может быть записан в следующем виде

соотношение неопределенностей.

Здесь Δx - неопределенность координаты x, Δp - неопределенность импульса, ħ - постоянная Планка, деленная на 2π (h = 6.62·10-34 Дж·с). Выражение (1) следует понимать так, что если мы точно задаем координату частицы (Δx → 0), то ничего не можем сказать о величине импульса (Δp → ∞). Одновременно точно задать координату и импульс микрочастицы невозможно. Для иллюстрации рассмотрим опыт по дифракции электронов на щели. Прямой опыт Йенсона (см. лекцию) показал, что за щелью распределение интенсивности электронов будет иметь вид, показанный на рис.1.

дифракция электронов
Рис.1. Дифракция электронов на щели.
Отклонение электрона от первоначального направления означает получение им приращения импульса Δp. Ширина щели служит мерой неопределенности положения электрона (электрон проник в щель, в какой точке щели это произошло, неизвестно). Из опыта известно, что при уменьшении ширины щели дифракционная картина уширяется. Т.е., если Δx уменьшается, Δp растет, как это предсказывает соотношение (1).

Принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из величин, входящих в соотношение. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно. Неравенства (1) и (2) представляют собой ограничения применимости понятий классической механики.

Оценим количественную сторону ограничений на трех примерах.
4,8(62 оценок)
Ответ:
Anasstezz
Anasstezz
15.11.2020

Нет

Объяснение:

Давление, производимое атмосферой на находящиеся в ней предметы и на земную поверхность, называется атмосферным давлением. Принято, что атмосферное давление в каждой точке атмосферы равно весу всего выше лежащего столба воздуха с основанием, равным единице.

На уровне моря атмосферное давление в среднем близко к тому давлению, которое производит столб ртути высотой 760 мм. Атмосферное давление убывает с высотой по определённому закону в зависимости от вертикального распределения плотности воздуха. Так, на высоте около 5 км оно составляет около половины от значения у земной поверхности, а на высоте 100 км его практически нет. Часто задаётся во какое же давление является нормой?

Для населённых пунктов, расположенных на высоте земной поверхности близкой к уровню моря, например, в Санкт-Петербурге, это значение давления составляет 760 мм.рт.ст. Тогда как в столице, расположенной географически на возвышенности, нормальным является значение 748 мм.рт.ст.

Атмосферное давление изменяется не только с высотой, но и по горизонтали, причём очень неравномерно и постоянно меняется. Атмосферное давление испытывает как периодические (суточный, годовой ход), так и непериодические колебания. Особенно резко, и мы в основном все это чувствуем, оно меняется при прохождении циклонов.

4,5(35 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ