М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Чебурашка1234567890
Чебурашка1234567890
25.09.2020 06:45 •  Физика

На сколько повысится температура оловянного солдатика массой 40 г, если руки ребёнка, держащего солдатика, отдала ему 110,4 дж теплоты?

👇
Открыть все ответы
Ответ:
123451415
123451415
25.09.2020

В момент времени t = 1 с ускорения точек были одинаковы, относительная скорость точек v₂₋₁ = 3 м/с, точки находились на расстоянии 5 м друг от друга

Объяснение:

При движении координата 1-й точки изменяется по закону

x₁(t) = 1 + 7t + t² + 2t³

Скорость движения 1-й точки

v₁(t) = x' = 7 + 2t + 6t²

Ускорение движения 1-й точки

a₁(t) = v₁'(t) = 2 + 12t

Ускорение движения 2-й точки задано

a₂(t) = 8 + 6t

Момент времени t, в который ускорения точек одинаковы, определим из уравнения

2 + 12t = 8 + 6t

6t = 6

t = 1 (с)

Cкорость движения 2-й точки

v₂(t) =v₂₀ + ∫a₂(t) dt = 1 + ∫(8 + 6t) dt = 1 + 8t +3t²

В моvент времени t = 1 скорости точек

v₂(1) = 1 + 8 + 3 = 12 (м/с)

v₁(t) = 7 + 2 + 6 = 15 (м/с)

Относительная скорость

v₂₋₁ = v₁(t) - v₂(1) = 15 - 12 = 3 (м/с)

Координата 2-й точки

х₂(е) = х₂₀ + ∫v₂(t) d =  ∫(1 + 8t + 3t²) dt = t + 4t² + t³

В моvент времени t = 1 координаты точек

x₁(1) = 1 + 7 + 1 + 2 = 11 (м)

х₂(1) = 1 + 4 + 1 = 6 (м)

Точки находились друг от друга на расстоянии

s₁₋₂ = 11 - 6 = 5 (м)

4,5(35 оценок)
Ответ:
nast60
nast60
25.09.2020

(a=2\) м/с2, \(\tau=5\) с, \(t-?\)

Решение задачи:

Схема к решению задачиАэростат вместе с предметом начинает движение с поверхности земли. Хотя это и не написано в условии, но подразумевается, что это так.

Через время \(\tau\) они, благодаря ускорению \(a\), достигнут какой-то высоты \(h\). Это ускорение создают какие-то силы, например, сила Архимеда, сила тяжести и т.д, в данном случае они не важны, поскольку это задача на кинематику, а не динамику. Её (высоту) легко определить по следующей формуле:

\[h = \frac{{a{{\tau}^2}}}{2}\;\;\;\;(1)\]

Но если аэростат двигался равноускоренно, значит через \(\tau\) и у аэростата, и у предмета будет какая-то скорость \(\upsilon _0\), которая сохранится у тела и по величине, и по направлению после выпадения из аэростата. Найдем \(\upsilon _0\) таким образом.

\[{\upsilon _0} = a\tau\;\;\;\;(2)\]

Начальная скорость предмета – это и есть скорость аэростата в момент выпадения предмета. Но на его ускорение (после падения) никак не повлияет ускорение аэростата. Ускорение создается только силами, действующими на тело, а они разные для аэростата и предмета.

Если записать уравнение движения предмета, то оно будет выглядеть следующим образом:

\[oy:y = h + {\upsilon _0}t – \frac{{g{t^2}}}{2}\;\;\;\;(3)\]

Знак “плюс” перед слагаемым \({\upsilon _0}t\) показывает, что скорость в момент выпадения камня сонаправлена с осью \(y\), знак “минус” перед \(\frac{{g{t^2}}}{2}\) – то, что ускорение противонаправлено введенной оси.

Когда предмет долетит до земли через время \(t\), то его координата \(y\) станет равна нулю, поэтому приравняем уравнение (3) к нулю:

\[h + {\upsilon _0}t – \frac{{g{t^2}}}{2} = 0\]

Подставим в полученное выражение формулы для \(h\) (см. формулу (1)) и \(\upsilon_0\) (см. формулу (2)):

\[\frac{{a{{\tau}^2}}}{2} + a{\tau}{t} – \frac{{g{t^2}}}{2} = 0\]

Умножим обе части полученного уравнения на (-1):

\[\frac{{g{t^2}}}{2} – a\tau t – \frac{{a{\tau ^2}}}{2} = 0\]

Решим это квадратное уравнение, заменив буквенные обозначения численными данными из условия. Это действие не повлияет на ответ, поскольку все исходные данные даны в системе СИ, поэтому и ответ мы получим в ней же.

\[5t^2 – 10t – 25 = 0\]

\[t^2 – 2t – 5 = 0\]

Определим дискриминант квадратного уравнения \(D\).

\[D = 4 + 4 \cdot 5 = 24\]

\[t = \frac{{2 \pm \sqrt {24} }}{2} = 1 \pm \sqrt 6 \]

\[\left[ \begin{gathered}

t = 3,45 \; с \hfill \\

t = – 1,45 \; с \hfill \\

\end{gathered} \right.\]

Отбрасываем отрицательный корень и получаем ответ к задаче.

ответ: 3,45 с.

4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ