Человек, рост которого составляет h = 189 см, стоит под фонарём. Его тень при этом составляет L° = 170 см. Если он отойдёт от фонаря ещё на x = 0,18 м = 18 см, то его тень станет равна L” = 206 см. На какой высоте над землёй висит фонарь?
Чёрный треугольник: Н/h = AD/L° = AD/170; (*)
Красный треугольник: Н/h = AC/L” = AC/206. (**)
Но DС = L”+ x – L° = 206 + 18 – 170 = 54 см. (***)
Делим (**) на (*): 1 = (АС/206)/(AD/170), откуда: (АС/206) = (AD/170) или:
АС = 1,21*AD.
Но из (***): DC = 54 см. Или AC – AD = 54. ==> 1,21*AD – AD = 54 ==> 0,21*AD = 54 ==> AD = 257,1 см.
Подставив AD в (*), получим: 170*H = h*AD ==> H = h*257,1/170 = 189*257,1/170 = 285.8 см.
Итак, фонарь висит на высоте Н = 286 см.
ОТВЕТ
1) E ф=A вых +E кин где E-энергия фотона A -работа выхода E-кинетическая энергия
Е ф= h*v где h-постоянная Планка (6.63*10^-34) v - частота света
h*v= Aвых + Eкин
Авых для меди = 4.36 эВ= 6.9*10^-19 Дж =>
Eф= 6.63*10^-34 * 6 • 10^16 = 39.8*10^-18 Дж=398*10^-19
Екин=Еф-Авых= (398-6.9)*10^-19 Дж =391*10^-19 Дж
2) формула та же. только Еф=h*c / L где с-скорость света в ваакуме(3*10^8м/с) L-длина волны света
Екин=mV^2 /2 где m - масса покоющегося электрона(9.1 *10^-31 кг)
0,28*10^6м\c = 28*10^4 м\с
h*c / L=Aвых + mV^2 /2 => Aвых=h*c / L - mV^2 /2
h*c / L = 6.63*10^-34 * 3*10^8 / 590*10^-9 = 3.4*10^-19 Дж
mV^2 /2= 9.1 *10^-31 * 784*10^8 / 2=3567*10^-23 Дж=0.35*10^-19 Дж
Авых = (3.4 - 0.35)*10^-19 = 3.05*10^-19 Дж