Воздействие АЭС на окружающую среду при соблюдении технологии строительства и эксплуатации может и должно быть значительно меньше, чем других технологических объектов: химических предприятий, ТЭЦ. Однако радиация в случае аварии – один из опасных факторов для экологии, человеческой жизни и здоровья. В этом случае выбросы приравниваются к возникающим при испытании ядерного оружия.
Каково воздействие АЭС в нормальных и нештатных условиях, можно ли предотвратить катастрофы и какие меры принимаются для обеспечения безопасности на ядерных объектах?
Развитие и значение атомных электростанций
Первые исследования по ядерной энергетике пришлись на 1890-е гг., а строительство крупных объектов началось с 1954 г. Атомные электростанции возводятся для получения энергии путем радиоактивного распада в реакторе.
Сейчас используются такие типы реакторов третьего поколения:
легководные (наиболее рас тяжеловодные;
газоохлаждаемые;
быстро-нейтронные.
В период с 1960 г. по 2008 г. в мире были введены в работу около 540 атомных реакторов. Из них около 100 закрылись по разным мотивам, в том числе из-за негативного воздействия АЭС на природу. До 1960 г. реакторы отличались высоким показателем аварийности из-за технологического несовершенства и недостаточной проработки регулирующей нормативной базы. В следующие годы требования ужесточались, а технологии совершенствовались. На фоне уменьшения запасов природных энергоресурсов, высокой энергоэффективности урана строились более безопасные и оказывающее меньшее негативное воздействие АЭС.
Для плановой работы атомных объектов добывается урановая руда, из которой обогащением получается радиоактивный уран. В реакторах вырабатывается плутоний – самое токсичное из существующих веществ, полученных человеком. Обработка, транспортировка и захоронение отходов деятельности АЭС требует тщательных мер предосторожности и безопасности.
Факторы воздействия АЭС на окружающий мир
Наряду с прочими промышленными комплексами атомные электростанции оказывают воздействие на природную среду и человеческую жизнедеятельность. В практике использования энергетических объектов нет на 100% надежных систем. Анализ воздействия АЭС проводится с учетом возможных последующих рисков и ожидаемой пользы.
При этом совершенно безопасной энергетики не существует. Воздействие АЭС на окружающую среду начинается с момента возведения, продолжается при эксплуатации и даже по ее окончании. На территории расположения станции по выработке электроэнергии и за ее пределами следует предусматривать возникновение таких негативных влияний:
Изъятие земельного участка под строительство и обустройство санитарных зон.
Изменение рельефа местности.
Уничтожение растительности из-за строительства.
Загрязнение атмосферы при необходимости взрывных работ.
Переселение местных жителей на другие территории.
Вред популяциям местных животных.
Тепловое загрязнение, влияющее микроклимат территории.
Изменение условий пользования землей и природными ресурсами на определенной территории.
Химическое воздействие АЭС – выбросы в водные бассейны, атмосферу и на поверхности почв.
Загрязнение радионуклидами, которое может вызвать необратимые изменения в организмах людей и животных.Радиоактивные вещества могут попадать в организм с воздухом, водой и пищей. Против этого и других факторов существуют специальные превентивные меры.
Ионизирующее излучение при выводе станции из эксплуатации с нарушением правил демонтажа и дезактивации.
Один из самых значительных загрязняющих факторов – тепловое воздействие АЭС, возникающее при функционировании градирен, охлаждающих систем и брызгальных бассейнов. Они влияют на микроклимат, состояние вод, жизнь флоры и фауны в радиусе нескольких километров от объекта. КПД атомных электростанций составляет около 33-35%, остальное тепло (65-67%) выделяется в атмосферу.
На территории санитарной зоны в результате воздействия АЭС, в частности водоемов-охладителей, выделяются тепло и влага, вызывая повышение температуры на 1-1,5° в радиусе нескольких сот метров. В теплое время года над водоемами образуются туманы, которые рассеиваются на значительное удаление, ухудшая инсоляцию и ускоряя разрушение зданий. При холодной погоде туманы усиливают гололедные явления. Брызговые устройства вызывают еще большее повышение температуры в радиусе нескольких километров.
Охлаждающие воду испарительные башни-градирни испаряют летом до 15%, а зимой до 1-2% воды, формируя пароконденсатные факелы, вызывая на 30-50% уменьшение солнечного освещения на прилегающей территории, ухудшая метеорологическую видимость на 0,5-4 км. Воздействие АЭС сказывается на экологическом состоянии и гидрохимическом составе воды прилегающих водоемов. После испарения воды из охладительных систем в последних остаются соли. Для сохранения стабильного солевого баланса часть жесткой воды приходится сбрасывать, заменяя ее свежей.
Объяснение:
9) г
10) г
11) б (По уравнению Клапейрона-Менделеева pV = νRT, при повышение температуры (T) давление (p) увеличивается)
12) а (p = νRT/V, при уменьшении объема (V) давление увеличивается, так как зависимость обратно пропорциональная )
Задачки:
S = 20см^2 = 20*10^(-4) м^2, m = 2.5 кг, p = mg/S = 25/(20*10^(-4)) ⇒ p = 12.5 (кПа)h = 8 см = 8*10^(-2) м, ρ = 1000 кг/м^3 ⇒ p = ρgh = 1000*10*8*10^(-2) = 8*10^2 = 800 Па ⇒ p = 800 Паm = 1.5 кг, V = 8л = 8*10^(-3) м^3, S = 20 см^2 = 20*10^(-4) м^2 ⇒ p = mg/S = 15/(20*10^(-4)) = 7500 Па = 7.5 кПА ⇒ p = 7.5 кПаВидимо, задача прервалась немного. Из-за это неизвестно всё условие задачи, но она решается по формуле F1/S1 = F2/S2, где F1 и F2 - силы, действующие на маленький и большой поршень, S1 и S2 - площадь маленького и большого поршня
15.5м/с
Объяснение:
Дано: СИ: Решение:
S1-4км 4000м Vср=(S1+S2)+(t1+t2)
t1-5мин 300с Vср=(4000+10000(м)):(300+600(с))
S2-10км 10000км Vср=14000м:900с=(примерно)15.5м/с
t2-10мин 600с
Найти:
Vср
ответ:Vср=15.5м/с.