У поверхности Земли на космонавта действует сила тяжести 800 Н. Если тот же космонавт находится в космическом корабле, движущемся по круговой орбите вокруг Земли на расстоянии двух земных радиусов, то какая сила тяжести действует на него со стороны Земли? Гравитационную постоянную, ускорение свободного падения на Земле, массу и радиус Земли берём из тетради. ответ округлить до целых. 1. 80 Н
2. 800 Н
3. 72 Н
4. 88 Н
l = 400 м
Первый бегун пробежал тогда: lk + lλ = v₁t, где 0 ≤ λ ≤ 1, k∈|Ν.
Второй соответственно пробежит lm+lλ = v₂t. m∈|Ν.
Какой смысл этих уравнений: в момент встречи оба бегуна должны встретится в одной точке, которая характеризуется расстоянием до старта
0 ≤ r < l. r ≡ lλ. При этом каждый из них может пробежать разное число целых кругов.
Теперь составим разность этих уравнений и обозначим s = m-k
Тогда, ls = (v₂ - v₁)t, преобразуя получим:
Из данного выражения умножая на скорость каждого бегуна можно получить соответствующее расстояние.
Теперь случай, когда они бегут в разные стороны.
Точка встречи по прежнему характеризуется расcтоянием r = λl, причём оно будет измеряться по ходу движения первого бегуна.
Т.е. уравнение для первого будет:
lk + lλ = v₁t
А для второго:
lm + l(1-λ) = v₂t
Сложим их и получим:
где d = m+k+1 - любое натуральное число.
Видно, что при d = 1 мы получили обычною формулу для встречного движения.
P.S. Данное решение проведено не совсем формально. Было бы правильнее задать криволинейную ось по стадиону и учитывать знаки скоростей в проекцию на неё, а вместо пути писать координату на ней, но для большей наглядности мы рассматривали модули величин, сразу учитывая, какая скорость больше.