Залежність швидкості матеріальної точки від часу задано рівнянням: Vx=5+4t. Записати залежність пройденого шляху від часу Sx(t). Обчислити шлях пройдений точкою за 2с.
Пусть V - начальная скорость, а - угол к горизонту. Тогда горизонтальная проекция скорости будет Vx=V*cos(a), а вертикальная Vy=V*sin(a). Если время подъёма t, то высота подъёма будет: h = gt^2/2 Горизонтальная дальность полёта: l = 2*t*Vx = 2*t*V*cos(a) А связь скорости и времени подъёма будет такой: Vy = V*sin(a) = gt Это всё верно в общем случае для любого такого полёта. Теперь рассматриваем нашу ситуацию. Надо, чтобы высота подъёма равнялась дальности, т.е.: h = l gt^2/2 = 2*t*V*cos(a) gt/2 = 2*V*cos(a) gt = 4*V*cos(a) А теперь выражаем время из начальной скорости: t = V*sin(a)/g и подставляем в найденное равенство: g*V*sin(a)/g = 4*V*cos(a) Сокращаем всё что можно: sin(a) = 4cos(a) Пытаемся найти этот угол. Возведём равенство в квадрат: sin^2(a) = 16cos^2(a) И из основного тригонометрического тождества заменяем: 1-cos^2(a) = 16cos^2(a) 1 = 17cos^2(a) cos^2(a) = 1/17 cos(a) = √(1/17) a = arccos (√(1/17)) = 76 градусов (приближённо)
Пусть V - начальная скорость, а - угол к горизонту. Тогда горизонтальная проекция скорости будет Vx=V*cos(a), а вертикальная Vy=V*sin(a). Если время подъёма t, то высота подъёма будет: h = gt^2/2 Горизонтальная дальность полёта: l = 2*t*Vx = 2*t*V*cos(a) А связь скорости и времени подъёма будет такой: Vy = V*sin(a) = gt Это всё верно в общем случае для любого такого полёта. Теперь рассматриваем нашу ситуацию. Надо, чтобы высота подъёма равнялась дальности, т.е.: h = l gt^2/2 = 2*t*V*cos(a) gt/2 = 2*V*cos(a) gt = 4*V*cos(a) А теперь выражаем время из начальной скорости: t = V*sin(a)/g и подставляем в найденное равенство: g*V*sin(a)/g = 4*V*cos(a) Сокращаем всё что можно: sin(a) = 4cos(a) Пытаемся найти этот угол. Возведём равенство в квадрат: sin^2(a) = 16cos^2(a) И из основного тригонометрического тождества заменяем: 1-cos^2(a) = 16cos^2(a) 1 = 17cos^2(a) cos^2(a) = 1/17 cos(a) = √(1/17) a = arccos (√(1/17)) = 76 градусов (приближённо)
Объяснение:
Дано:
Vₓ (t)= 5 + 4t
Sₓ(t) - ?
Sₓ(2) - ?
Общее уравнение скорости:
Vₓ(t) = V₀ₓ + aₓ·t
Имеем:
V₀ₓ = 5 м/с
aₓ = 4 м/с₂
Тогда:
Sₓ(t) = V₀ₓ·t + aₓ·t²/2
Sₓ(t) = 5t + 4·t²/2
S,ₓ(2) = 5·2 + 4·2²/2 = 10 + 8 = 18 м