1) электрическое поле создано заряженной металлической сферой с центром в точке О радиуса R1 = 2 см с поверхностной плотностью заряда ϭ = 6 нКл/см2. S = 4*pi*R1^2 - площадь сферы Q=S*ϭ=4*pi*R1^2*ϭ - полный заряд сферы Q=4*pi*0,02^2*6*10^(-9+4) ~ 3,0E-07 Кл
точка А находится на расстоянии r1 = 2 см от поверхности заряженного шара . поле за пределами сферы идентично полю, создаваемому точечным зарядом, расположенным в центре сферы и в точке А равно E = 1/(4*pi*ε0*ε)*Q/(R1+r1)^2 - напряженность электрического поля, векторная величина, направление вектора от центра сферы E = 1/(4*pi*8,854*10^(-12)*6)*3,0E-07/(0,02+0,02)^2 ~ 282 000 В/м fi = 1/(4*pi*ε0*ε)*Q/(R1+r1) - потенциал электрического поля, скалярная величина fi = 1/(4*pi*ε0*ε)*Q/(R1+r1)=1/(4*pi*8,854*10^(-12)*6)*3,0E-07/(0,02+0,02)~11 300 B
2) величину и направление силы , действующей на заряд q = 2|3 нКл, помещенный в эту точку поля . F=E*q=282 000*2/3*10^(-9) Н = 0,000188239 H ~ 0,00019 H ~ 0,0002 H
3) потенциальную энергию взаимодействия поля с зарядом q в точке А . Wа=fi*q=11300*2/3*10^(-9) Дж = 7,53E-06 Дж
4) работу совершаемую силами , перемещающими заряд q из точки А в точку В , отстящую от поверхности шара на r2 =n4 см , A=Wb-Wa=q*1/(4*pi*ε0*ε)*Q*(1/(R1+r2)-(1/(R1+r1)) = 5,02E-06 - 7,53E-06 Дж = -2,51E-06 Дж 5) поток вектора напряженности через сферу радиуса R2 = 1 см с центром в точке О равен нулю, так как внутри сферы радиуса R2 = 1 см < R1 = 2 см заряд равен нулю согласно теоремы остроградского-гаусса
Найдём скорость протона во время нахождения в магнитном поле. для этого приравняем центростремительную силу и силу лоренца: mv/r = qb; отсюда v = qbr/m; разность потенциалов равна работе электрического поля делённой на заряд, а работа электрического поля в свою очередь равна разности кинетических энергий протона со скоростями v0 и v, причём v = v0/2: u = (mv0^2/2 - m(v0/2)^2/2)/e = 3mv0^2/8e = 3*(qbr)^2/8me = 3*(1.60217662 * 10^(-19) * 0.1 * 0.04)^2/(2 * 1.6726219 * 10^(-27) * 1.60217662 * 10^(-19)) =(примерно) 574.73 в.
электрическое поле создано заряженной металлической сферой с центром в точке О радиуса R1 = 2 см с поверхностной плотностью заряда ϭ = 6 нКл/см2.
S = 4*pi*R1^2 - площадь сферы
Q=S*ϭ=4*pi*R1^2*ϭ - полный заряд сферы
Q=4*pi*0,02^2*6*10^(-9+4) ~ 3,0E-07 Кл
точка А находится на расстоянии r1 = 2 см от поверхности заряженного шара .
поле за пределами сферы идентично полю, создаваемому точечным зарядом, расположенным в центре сферы и в точке А равно
E = 1/(4*pi*ε0*ε)*Q/(R1+r1)^2 - напряженность электрического поля, векторная величина, направление вектора от центра сферы
E = 1/(4*pi*8,854*10^(-12)*6)*3,0E-07/(0,02+0,02)^2 ~ 282 000 В/м
fi = 1/(4*pi*ε0*ε)*Q/(R1+r1) - потенциал электрического поля, скалярная величина
fi = 1/(4*pi*ε0*ε)*Q/(R1+r1)=1/(4*pi*8,854*10^(-12)*6)*3,0E-07/(0,02+0,02)~11 300 B
2) величину и направление силы , действующей на заряд q = 2|3 нКл, помещенный
в эту точку поля .
F=E*q=282 000*2/3*10^(-9) Н = 0,000188239 H ~ 0,00019 H ~ 0,0002 H
3) потенциальную энергию взаимодействия поля с зарядом q в точке А .
Wа=fi*q=11300*2/3*10^(-9) Дж = 7,53E-06 Дж
4) работу совершаемую силами , перемещающими заряд q из
точки А в точку В , отстящую от
поверхности шара на r2 =n4 см ,
A=Wb-Wa=q*1/(4*pi*ε0*ε)*Q*(1/(R1+r2)-(1/(R1+r1)) = 5,02E-06 - 7,53E-06 Дж = -2,51E-06 Дж
5) поток вектора напряженности через сферу радиуса R2 = 1 см с центром в
точке О равен нулю, так как внутри сферы радиуса R2 = 1 см < R1 = 2 см заряд равен нулю согласно теоремы остроградского-гаусса