При этом ударе (абсолютно неупругом) выполняется закон сохранение импульса. m1v1=(m1+m2)v2; Значит скорость сцепки после столкновения будет v2=m1v1/(m1+m2), а кинетическая энергия E=0.5(m1+m2)*((m1v1)/(m1+m2))^2; E=0.5(m1v1)^2 / (m1+m2); Сила трения равна F=U(m1+m2)g. Чтобы остановить сцепку, она должна совершить работу, равную кинетической энергии сцепки A=E. Так как работа равна силе, умноженной на перемещение A=FL, то путь до остановки сцепки равен L=E/F; (переведём скорость в м/с, разделив 12/3,6=3,(3) м/с) L=0.5(m1v1)^2 / (m1+m2)/(U(m1+m2)g); L=(0.5/Ug)*(m1v1)^2 /(m1+m2)^2; L=(0.5/(0.05*10))*(50000*3,33)^2 / (50000+30000)^2; L=2,3 м (округлённо).
Из 5 представленных вариантов y(-2)=-1 вычислен верно, значит, подставляя в уравнение линейной функции y(x)=ax+b получим: -1= -2a+b, => b= 2a-1 теперь подставляя в наше уравнение каждую пару значений аргумента x и функции у, вычислим параметр а. 3 из полученных решений будут между собой равны, а 4-й будет отличаться от других. это и будет неверно найденное значение. 1= -1a+2a-1 => a=2 3= 2a-1 => a=2 4= a+2a-1 => a=5/3 7=2a+2a-1 => a=2 ответ: y(1)
E=0.5(m1v1)^2 / (m1+m2);
Сила трения равна F=U(m1+m2)g. Чтобы остановить сцепку, она должна совершить работу, равную кинетической энергии сцепки A=E. Так как работа равна силе, умноженной на перемещение A=FL, то путь до остановки сцепки равен L=E/F; (переведём скорость в м/с, разделив 12/3,6=3,(3) м/с)
L=0.5(m1v1)^2 / (m1+m2)/(U(m1+m2)g);
L=(0.5/Ug)*(m1v1)^2 /(m1+m2)^2;
L=(0.5/(0.05*10))*(50000*3,33)^2 / (50000+30000)^2;
L=2,3 м (округлённо).