ответ:
Объяснение:
Запишем уравнение гармонических колебаний в общем виде:
Будим считать, что маятник, в начальный момент времени, находился в положении максимального смещения от положения равновесия. В этом случае, когда мы отпустим маятник, он начнет совершать гармонические, незатухающие колебания.
Отсюда ⇒
(1)
Мы знаем, что потенциальную энергию пружинного маятника W, в любой момент времени t, можно вычислить как kx²(t)/2, а кинетическую энергию E, как mv²(t)/2.
То-есть , но согласно уравнению (1) получим
Аналогично , однако мы знаем, что
Тогда ⇒
, а это значит что
Поэтому , так как
, то
⇒
(2)
Теперь определим cos²(ωt), мы знаем, что в нашем случае, в момент момент времени t растяжение пружины маятника составило А/3, тогда согласно уравнению (1) ⇒
, следовательно
Возвращаясь к уравнению (2) получим
Объяснение:
Плохо, что не написан какой изотоп бора, будем считать, что это ₅¹¹В.
Вычислим массу ядра бора: mя = mиз - 5* me =
= 11,00931 - 5*0,00055 = 11, 00656 а.е.м.
Вычислим суммарную массу 5-и протонов и 6-и нейтронов входящих в состав ядра бора: ∑m = 5*mp + 6*mn = 5*1,00728 + 6*1,00866 =
= 5,03640 + 6,05196 = 11,08836 а.е.м.
Вычислим дефект массы ядра бора: Δm = ∑m = mя = 11,08836 - 11,00656 = 0,08180 а.е.м.
Переведем в килограммы: 1 а.е.м. = 1,6606*10⁻²⁷ кг => Δm = 1,6606*10⁻²⁷ кг * 0,08180 ≈ 1,35837*10⁻²⁸ кг ≈ 1,36*10⁻²⁸ кг
Вычислим энергию связи ядра бора: E = m*c² =
= 1,35837*10⁻²⁸ кг * (3*10⁸ м/с)² ≈ 1,22*10⁻¹¹ Дж.