Обозначим площадь основания цилиндра S = 1,2 дм² = 0,012 м², массу поршня m = 2,5 кг, первоначальный объем воздуха V₁ = 5л = 5*10⁻³м³, конечный объем воздуха V₂, изменение температуры ΔT = 850К, работу A = 1,5 кДж = 1500 Дж, наружное давление p₀ = 100кПа = 10⁵ Па, первоначальную температуру воздуха T₁, конечную температуру T₂.
При изобарном расширении давление газа остается постоянным. Оно равно сумме наружного давления p₀ и давления оказываемого со стороны поршня p₁. На поршень действует сила тяжести F = mg, где m - масса поршня. Тогда давление с его стороны p₁ = F/S = mg/S, где S - площадь основания цилиндра. Тогда давление газа p = p₀ + p₁ = p₀ + F/S = p₀ + mg/S. При изобарном процессе работа равна A = pΔV = p(V₂ - V₁) => pV₂ = A + pV₁ => V₂ = (A + pV₁)/p = A/p + V₁ = A/(p₀ + mg/S) + V₁ . Согласно уравнению изобарного процесса V₁/T₁ = V₂/T₂. Так как T₂ = T₁ + ΔT, то получаем V₁/T₁ = V₂/(T₁ + ΔT)=> V₂T₁ = V₁(T₁ + ΔT) => V₂T₁ - V₁T₁ = V₁ΔT => T₁(V₂ - V₁) = V₁ΔT => T₁ = V₁ΔT/(V₂ - V₁) = V₁ΔT/[A/(p₀ + mg/S) + V₁ - V₁)] = V₁ΔT/[A/(p₀ + mg/S)] = 5*10⁻³*850/[1500/(10⁵ + 2,5*10/0,012) ≈ 283К.
Пусть масса пули m, длина ствола L, скорость в момент вылета v, тогда:
Импульс пули на момент вылет из ствола равен p=mv.
В то же время, согласно 2-му закону Ньютона в импульсной форме p=Ft, где t - время действия силы давления пороховых газов F, то есть время полета пули в стволе. Отсюда mv=Ft.
Из кинематических соображений имеем, что L=a*(t^2)/2, где а - ускорение пули в стволе.
А из второго закона Ньютона получим a=F/m.
Имеем систему уравнений:
mv=Ft
L=a*(t^2)/2
F=ma
Решаем ее относительно F:
t = корень(2L/a)=корень(2Lm/F)
mv=Ft=F*корень(2Lm/F)=корень(2LmF^2/F)=корень(2FLm)
m^2*v^2=2FLm
m*v^2=2FL
И, окончательно: F=m*(v^2)/(2L).
Подставим численные значения величин, выраженных в СИ:
F=0.0079*15^2/(2*0.45)=1.95Н.
1) но точно не знаю правда или не правильно