107 (возможно 106)
Объяснение:
Дано
l=2,3м
t=2,7мин=162с
g=9,8м/с²
π=3,14
Найти n
период математического маятника можно найти по формуле
T=2π√(l/g)=2*3,14√(2,3м/9,8м/с²)=6,28√(0,235с²)=6,28*0,49с=3,04с
За время t маятник совершит t/T=162c/3,04с =53,25 полных колебаний
За один период маятник проходит точки, где его кинетическая энергия масимальна дважды
за 53 периода это случиться 53*2=106 раз, за еще 0,25 периода маятник придет в эту точку еще раз
итого n=107
на самом деле более точное зачение не 53,25 а 53,2481, поэтому возможно, что в задаче подразумевается, что за 162 с маятник всеже не дойти до этой точки 107 раз и тогда правильный ответ 106
ЛЯ РЕШЕНИЯ ЗАДАЧ С ТОНКИМИ ЛИНЗАМИ НАДО
знать совсем немного. Напомним их основные свойства.
1) Характер линзы зависит от радиусов образующих ее
сферических поверхностей и от показателя преломления
материала линзы относительно окружающей среды
n n n = л ср . При n > 1 двояковыпуклая и плосковыпуклая
линзы – собирающие, двояковогнутая и плосковогнутая
линзы – рассеивающие; при n < 1 – наоборот. Эти утверждения следуют из формулы для фокусного расстояния F:
( )
1 2
1 1 1
n 1
F R R
Ê ˆ
= - + Á ˜ Ë ¯ ,
где радиус выпуклой поверхности считается положительным, а радиус вогнутой – отрицательным. Если F положительно, то линза собирающая, в противном случае – рассеивающая. Эту формулу знать полезно, но необязательно.
Пример 1
. Из очень тонких одинаковых сферических стеклянных сегментов изготовлены линзы, представленные на рисунке 1. Если показатель преломления глицерина больше, чем показатель преломления воды, то собирающая линза представлена на рисунке: 1); 2); 3); 4).
(ответ: 4).)
2) Для решения задач полезно знать ход основных лучей.
а) Лучи, идущие через оптический центр линзы, не испытывают отклонения.
б) Лучи, падающие параллельно главной оптической оси
(рис.2), сходятся в фокусе, лежащем за линзой – в случае
Объяснение:
Объяснение:
Дано
p=1070 кг/м3
m=53,5 кг
V-?
V=m/p=53,5/1070=0,05 м3= 50 л