Найдем формулу, связывающую амплитудное значение тока в контуре с амплитудным значением напряжения. Как известно напряжение в контуре
U(t)=q(t)C=>qmax=Umax∗C(1) В тоже время I(t)=dqdt=q′(t). Величина заряда меняется по гармоническому закону q(t)=qmaxcos(ωt)=>I(t)=q′(t)=−qmax∗ωsin(ωt), таким образом мы получили, что Imax=−qmaxω(2) подставляем (1) в (2) Imax=−UmaxCωОсталось найти циклическую частоту ω=2πT, в то же время период равен по формуле Томсона T=2πLC−−−√, подставляем в (2)Imax=−Umax∗C2πT=−Umax∗C2π2πLC−−−√==−Umax∗CLC−−−√=−UmaxCL−−√Подставляем данные задачи Imax=−500В400∗10−12Ф10∗10−3Гн−−−−−−−−−−−√=−0,1А
Определим энергию которая необходима для плавления льда взятого при температуре плавления:
Qл = m1∙λ (1).λ = 33∙104 Дж/кг.
Qл = 16,5∙104 Дж.
Определим количество теплоты которая выделится при остывании воды от 80 0С до 0 0С:
Qв = с∙m2∙(t2 – t1) (2).с = 4200 Дж/кг∙0С.
Qв = -3,36∙104 Дж.
Количество теплоты которое выделится при остывании воды от 80 0С до 0 0С меньше чем энергия которая необходима для плавления льда взятого при температуре плавления.
Часть льда расплавится, часть останется в твердом состоянии. Энергия которая выделится при остывании воды пойдет на плавление части льда.
Определим массу льда который расплавится:QB=m⋅λ, m=QBλ.m = 0,102 кг.