Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений
Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида
для волны в пространстве любой размерности (например, в трехмерном пространстве)
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.
То есть, для колебательного процесса (см. выше) фаза (полная) для волны в одномерном пространстве для волны в трехмерном пространстве или пространстве любой другой размерности:
,
где — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2 радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция
Я конечно не уверен, но вот: m₁ = 1.5 кг - масса расплавленного свинца λ₁ = 23 000 Дж на кг - удельная теплота плавления свинца ΔT₁ = 327 - 27 = 300 C снижение температуры свинца С₁ = 130 Дж на кг на град - удельная теплоёмкость свинца Тепло, выделившееся при отвердевании и остывании свинца Q₁ = m₁(λ₁ + С₁ΔT₁) m₂ = 100 г = 0.1 кг - масса льда С₂ = 2100 Дж на кг на град - удельная теплоёмкость льда С₃ = 4200 Дж на кг на град - удельная теплоёмкость воды λ₂ = 330 000 Дж на кг - удельная теплота плавления льда ΔT₂ = 0 - (-10) = 10 С - нагрев льда до температуры плавления ΔT₃ = 27 - 0 = 27 С - нагрев воды до равновесной температуры ΔT₄ = 100 - 0 = 100 С - нагрев воды до точки кипения λ₃ = 2 256 000 Дж на кг - удельная теплота испарения воды x - доля выкипевшей воды Тепло, поглощенное при нагреве и расплаве льда а также при нагреве талой воды частью до равновесной температуры, частью - до температуры кипения плюс тепло, затраченное на выкипание части воды равно: Q₂ = m₂(λ₂ + C₂ΔT₂ + C₃(1-x)ΔT₃ + C₃xΔT₄ + xλ₃) Уравнение баланса получается из условия Q₁ = Q₂ m₁(λ₁ + С₁ΔT₁) = m₂(λ₂ + C₂ΔT₂ + C₃(1-x)ΔT₃ + C₃xΔT₄ + xλ₃) Выделив xm₂ из этого уравнения, получим: xm₂ = (m₁(λ₁ + С₁ΔT₁) - m₂(λ₂ + C₂ΔT₂ + C₃ΔT₃))/(λ₃ + C₃(ΔT₄ - ΔT₃)) xm₂ = (1.5*(23 000 + 130*300) - 0.1*(330 000 + 2100*10 + 4200*27)/(2 256 000 + 4200*(100 - 27)) = (93 000 - 46 440)/2 562 600 = 0.018 кг Из 100 граммов льда при начальной температуре -10 С выкипело 18 граммов воды при отвердевании свинца, налитого при температуре плавления и остывании его (свинца) до 27 градусов.
35кг
Объяснение: