М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Виктория80805
Виктория80805
13.11.2022 15:27 •  Физика

Ширина реки L=590 м, скорость ее течения U=0.7 м/с, собственная скорость катера V=42 м/с, Найдите 1) Минимальное время Т1, за которое катер может переrільгть реку.
2) Путь Ѕ, который он пройдёт при такой переrіраве.
3) Время Т2, за которое катер сможет переплыть реку го найкратчайшему пути.
4) Синус угла а между вектором собственной скорости катера и скорости течения при переправе по найкратчайшему пути,
ответы для пунктов 1), 2), 3) вводите с точностью до десятых, для 4) с точностью до тысячных.​

👇
Открыть все ответы
Ответ:
glebyha22
glebyha22
13.11.2022
Спина прямая, руки на поясе. Дети плавно и медленно поднимают то
правую, то левую ногу, согнутую в колене, и также плавно опускают.
Следить за спиной.)
— Аист, аист длинноногий,
Покажи домой дорогу. (Аист отвечает.)
— Топай правою ногою,
Топай левою ногою,
Снова — правою ногою,
Снова — левою ногою.
После — правою ногою,
После — левою ногою.
И тогда придешь домой.
А над морем — мы с тобою!
Над волнами чайки кружат,
Полетим за ними дружно.
Брызги пены, шум прибоя,
А над морем — мы с тобою! (Дети машут руками, словно крыльями.)
Мы теперь плывём по морю
И резвимся на просторе.
Веселее загребай
И дельфинов догоняй. (Дети делают плавательные движения руками.)
А сейчас мы с вами, дети
А сейчас мы с вами, дети,
Улетаем на ракете.
На носки поднимись,
А потом руки вниз.
Раз, два, три, четыре —
Вот летит ракета ввысь! (1—2 — стойка на носках, руки вверх, ладони образуют «купол ракеты»; 3—4 — основная стойка.)
А теперь на месте шаг
А теперь на месте шаг.
Выше ноги! Стой, раз, два! (Ходьба на месте.)
Плечи выше поднимаем,
А потом их опускаем. (Поднимать и опускать плечи.)
Руки перед грудью ставим
И рывки мы выполняем. (Руки перед грудью, рывки руками.)
Десять раз подпрыгнуть нужно,
Скачем выше, скачем дружно! (Прыжки на месте.)
Мы колени поднимаем —
Шаг на месте выполняем. (Ходьба на месте.)
От души мы потянулись, (Потягивания — руки вверх и в стороны.)
И на место вновь вернулись. (Дети садятся.)
4,5(10 оценок)
Ответ:
shopsms982
shopsms982
13.11.2022
Предположение:
Пуля не деформируется.
Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть x'(0) = v_0 .

По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b:
F_{r} = -bv
Земля проявляет вискозность только при достаточной скорости пули, допустим при x'(t) v_{crit}.
Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона:
F_{r}(t) = -bx'(t) = mx''(t) \Rightarrow mx''(t) + bx'(t) = 0
Пусть x(t) = Ce^{rt}. Тогда дифференциальное уравнение имеет вид
mr^2 + br = 0
r_1 = 0
mr_2+b = 0 \Rightarrow r_2 = \frac{-b}{m}
Решением является линейная комбинация функций:

То есть x(t) = C_1e^{0t} + C_2e^{-bt/m} = C_1 + C_2e^{-bt/m}
Тогда v(t) = x'(t) = C_2\frac{-b}{m}e^{-bt/m}
Так как v(0)=v_0, C_2\frac{-b}{m}=v_0 \Rightarrow C_2=\frac{-mv_0}{b}.
x(0) = 0 \Rightarrow C_1 + C_2 = 0 \Rightarrow C_1 = \frac{mv_0}{b}
v(t) = v_0e^{-bt/m}
Тогда
x(t) = \frac{mv_0}{b}(1 - e^{-bt/m})
Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния.
Найдем это расстояние:
Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока
v(t) v_{crit}, то есть
v(t_{crit}) = v_0e^{-bt_{crit}/m} = v_{crit} \Rightarrow -bt_{crit}/m = \ln(\frac{v_crit}{v_0})
Тогда
t_{crit} = \frac{m}{b}\ln(\frac{v_{0}}{v_{crit}})
Соответственно
x(t_{crit}) = \frac{mv_0}{b}(1 - e^{-bt_{crit}/m})=\frac{mv_0}{b}(1 - e^{-\ln(\frac{v_{0}}{v_{crit}})}
x(t_{crit}) = \frac{mv_0}{b}(1 - \frac{v_{crit}}{v_{0}}) = \frac{m}{b}(v_0-v_{crit})
При удвоении начальной скорости, конечная координата равна:
x_{new}(t_{crit}) = \frac{m}{b}(2v_0-v_{crit})
Тогда отношение нового пути к старому равно
\frac{2v_0-v_{crit}}{v_0-v_{crit}},
При, допустим, v_{crit} \triangleq 0.1v_{0}, это отношение равно
\frac{1.9}{0.9} = 2.(1).
4,4(68 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ