Физика тесно связана с техникой. До середины столетия связь между физикой и техникой носила такой характер, когда техника шла впереди. Создавались технические устройства, возникали технические проблемы, которые затем вызывали к жизни соответствующие физические исследования.
VIII век - создана паровая машина.
Начало ХIХ века - встал вопрос об увеличении кпд тепловых машин.
Сади Карно решил эту проблему, и его работа стала фундаментом для возникновения общего учения о передаче и превращении энергии - термодинамики.
Затем крупные физические открытия стали приводить к созданию новых отраслей техники. Академик С.И. Вавилов (1891 - 1955), советский физик и общественный деятель, сказал, что теснейшая связь физики с другими отраслями естествознания привела к тому, что физика глубочайшими корнями вросла в химию, геологию, астрономию, биологию и др. Возникли новые смежные дисциплины: астрофизика, биофизика, геофизика, физическая химия и т.д.
Физика является основой многих технических наук: теоретической механики, сопромата, электротехники.
Физика явилась фундаментом, на котором выросли такие области техники как – электро - и радиотехника, электронная и вычислительная техника, приборостроение.
Техника стимулирует развитие физики и наоборот. Могучая ускорительная техника развитию исследований по физике атомного ядра и элементарных частиц.
Содружество физики и техники приводит к сокращению временных интервалов между научными открытиями и их технической реализацией.
фотография - 110 лет
радио - 50 лет
транзистор - 15 лет
лазер - 7 лет
Физика тесно связана с математикой. Без математического описания невозможен точный инженерный расчет и развитие физических теорий.
Физика - база для создания новых отраслей техники, или научная база, на которой должна основываться общетехническая подготовка специалистов.
Физику подразделяют на классическую и квантовую. Начало классической физики было положено И. Ньютоном, сформулировавшим основные законы механики, а завершено развитие классической физики созданием в 1905 г. А. Эйнштейном специальной теории относительности и учитывающей требования этой теории релятивистской механики.
Объяснение:
Любой предмет, погруженный в жидкость, испытывает на себе силы давления. В каждой точке поверхности тела данные силы направлены перпендикулярно поверхности тела. Если бы эти они были одинаковы, тело испытывало бы только сжатие. Но силы давления увеличиваются пропорционально глубине, поэтому нижняя поверхность тела испытывает больше сжатие, чем верхняя. Можно рассмотреть и сложить все силы, действующие на тело в воде. Итоговый вектор их направления будет устремлен вверх, происходит выталкивание тела из жидкости. Величину этих сил определяет закон Архимеда. Плавание тел всецело основывается на этом законе и на различных следствиях из него. Архимедовы силы действуют и в газах. Именно благодаря этим силам выталкивания в небе летают дирижабли и воздушные шары: благодаря воздухоизмещению они становятся легче воздуха.
Наглядно силу Архимеда можно продемонстрировать простым взвешиванием. Взвешивая учебную гирю в вакууме, в воздухе и в воде можно видеть, что вес ее существенно меняется. В вакууме вес гири один, в воздухе – чуть ниже, а в воде – еще ниже.
Закон Архимеда необходим и подводникам. Дело в том, что плотность морской воды меняет свое значение в зависимости от глубины погружения. Правильный расчет плотности позволит подводникам правильно рассчитать давление воздуха внутри скафандра, что повлияет на маневренность водолаза и обеспечит его безопасное погружение и всплытие. Закон Архимеда должен учитываться также и при глубоководном бурении, огромные буровые вышки теряют до 50% своего веса, что делает их транспортировку и эксплуатацию менее затратным мероприятием.