Условия протекания термоядерных реакций Высокие температуры, =>, большие энергии сталкивающихся ядер, необходимы для преодоления электростатических сил отталкивания одноименно заряженных частиц и сближения ядер на расстояния порядка действия ядерных сил Плазма Для каждого состояния любого вещества характерен определенный интервал температур. При очень высоких температурах атомы и молекулы нейтрального газа теряют часть своих электронов и становятся положительными ионами. Когда температура достигает 10 4
о С , то газ уже представляет собой плазму. Плазма – четвертое состояние вещества . Токамак – тороидальная камера с магнитными катушками Международный экспериментальный термоядерный реактор ИТЭР Термоядерный реактор будет построен в Кадараше (Франция) и введен в эксплуатацию примерно в 2016 году. Именно ТОКАМАК должен стать основой первого в мире экспериментального термоядерного реактора. Проблема управляемого термоядерного синтеза настолько сложна, что самостоятельно с ней не справится ни одна страна. Поэтому мировое сообщество избрало самый оптимальный путь - создание проекта международного термоядерного экспериментального реактора - ИТЭР, в котором на сегодня участвуют, кроме России, США, Евросоюз, Япония, Китай и Южная Корея . Энергия, которая выделяется при термоядерных реакциях в несколько раз превышает энергию, выделяющуюся в цепных ядерных реакциях Синтез 4 г гелия Сгорание 2 вагонов каменного угля = Управляемые термоядерные реакции Чтобы использовать термоядерную энергию в мирных целях, необходимо научиться проводить управляемые термоядерные реакции. Одна из основных трудностей в осуществлении таких реакций заключается в том, чтобы удержать внутри установки высокотемпературную плазму. Термоядерные реакторы могут быть построены 1. на основе систем с магнитным удержанием плазмы, в которых нагрев и удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре.
(m v0²)/2 = mgh + Aтр, где Aтр - работа силы трения
v0² = 2gh + u gcosα S, где S - длина той части горки, по которой проехалась шайба. ее можно выразить как S = h / sinα. с учетом этого, получаем:
v0² = 2gh (1 + u ctgα),
откуда высота подъема шайбы равна:
h = v0² / 2g (1 + u ctgα).
2) уравнение закона сохранения энергии для спуска шайбы:
mgh = (m v²)/2 + Aтр.
аналогично выполняя преобразования, находим, что искомая скорость шайбы равна:
v = sqrt(2gh (1 - u ctgα).
с учетом выражения для h, получаем:
v = sqrt( (v0² (1 - u ctgα)) / (1 + u ctgα) ).
v = sqrt( 144*(1 - 0.6)/1.6) = 6 м/с