Найдем формулу, связывающую амплитудное значение тока в контуре с амплитудным значением напряжения. Как известно напряжение в контуре
U(t)=q(t)C=>qmax=Umax∗C(1) В тоже время I(t)=dqdt=q′(t). Величина заряда меняется по гармоническому закону q(t)=qmaxcos(ωt)=>I(t)=q′(t)=−qmax∗ωsin(ωt), таким образом мы получили, что Imax=−qmaxω(2) подставляем (1) в (2) Imax=−UmaxCωОсталось найти циклическую частоту ω=2πT, в то же время период равен по формуле Томсона T=2πLC−−−√, подставляем в (2)Imax=−Umax∗C2πT=−Umax∗C2π2πLC−−−√==−Umax∗CLC−−−√=−UmaxCL−−√Подставляем данные задачи Imax=−500В400∗10−12Ф10∗10−3Гн−−−−−−−−−−−√=−0,1А
Сила F1 со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения f1 полозьев о снег; поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней F2 направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы f2, направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна; и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. После того как лошадь сдвинула сани и установилось равномерное движение саней, сила f1 будет уравновешена силами f2 (первый закон Ньютона).