1. На Земле сила тяжести равна F₁ = mg₁ откуда m = F₁/g₁ где g₁ = 9.8 м с⁻² - ускорение свободного падения, имеющее с тз теории поля смысл напряженности гравитационного поля, то есть векторной характеристики, позволяющей определить силу, с которой поле воздействует на объект с гравитационной массой (гравитационным зарядом) m. Размерность [м с⁻²] в системе СИ эквивалентна [Н кг⁻¹]. Тогда сила тяжести в гравитационном поле с напряжённостью g₂ = 1,6 Н/кг близ поверхности Луны для объекта массы m = F₁/g₁ будет равна F₂ = mg₂ = F₁g₂/g₁ = 882*1.6/9.8 = 144 Н 2. Напряжённость этого поля равна 12 Н/кг. Для гравитационного поля напряженность есть вектор ускорения движения в этом поле для тел, перемещающихся под действием сил этого поля. 3. F = mg = 85*11.5 = 977.5 Н
Пусть начальная высота монетки h, конечная высота монетки h. энергия перед началом движения: e = m g h импульс перед началом движения: p = 0 e и p не должны меняться в процессе движения. энергия, после спуска с первой горки: e = (m/2) v^2 + (4m/2) u^2 импульс, после спуска с первой горки: p = m v - 4 m u (u - скорость движения первой горки после спуска монетки) два уравнения и две неизвестные: v, u (m/2) v^2 + (4m/2) u^2 = m g h m v - 4 m u = 0 из второго уравнения u = 4v подставим в первое: (m/2) 16 u^2 + 4 (m/2) u^2 = m g h 20 u^2 = 2 g h u^2 = g h /10 u = sqr(g h/10) тогда v = 4 sqr(g h/10) энергия в момент остановки монетки на второй горке: e = (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h импульс в момент остановки монетки на второй горке: p = - 4 m u + m y + (5 m) y (y - скорость движения второй горки вместе с монеткой в момент остановки монетки относительно второй горки) опять получаем систему из 2 уравнений и двух неизвестных y, h: (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h = m g h - 4 m u + m y + (5 m) y = 0 из второго уравнения: 6 y = 4 u y = 2 u /3 первое уравнение (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h = m g h 3 y^2 + 2 u^2 + g h = g h подставим y = 2 u/3: (4/3) u^2 + 2 u^2 + g h = g h g h = g h - (10/3) u^2 подставим u = sqr(g h/10): g h = g h - g h/3 h = (2/3)h ответ: монетка поднимется на 2/3 от начальной высоты
439.5 K (166.5 C)
Объяснение:
T1=293 K V2/V1=1.5 T2=?
===
p=const
V1/T1=V2/T2
T2=T1*V2/V1=293*1.5=439.5 K