1.
дано
q1=4 нкл =4*10^-9 кл
q2=6 нкл =6*10^-9 кл
k=9*10^9 н*м2/кл2
r=10 см=0.1 м
x - ?
решение
х -расстояние от первого заряда
r-x - расстояние от второго
напряженность
e1=kq1/x^2
e2=kq2/(r-x)^2
заряды одноименные, значит направления e1,e2 - противоположные
по условию
e=e1-e2=0
e1=e2
kq1/x^2=kq2/(r-x)^2
q1/x^2=q2/(r-x)^2
(r-x)^2 / x^2 = q2/q1
подставим значения
(0.1-x)^2 /x^2 = 6*10^-9 / 4*10^-9
(0.1-x / x)^2 =6/4 =3/2
0.1-x / x = √(3/2)
0.1-x = √(3/2)x
0.1 = √(3/2)x+x
x =0.1 / (√(3/2)+1)=0.0449 м = 4.5 см - расстояние от 1-го заряда
10- х =5.5 см - расстояние от второго
ответ 4.5 см или 5.5 см
2.
а) ∆φ = e*(x2-x1)=100*0.10=10 b
б) а = q*∆φ=5*10^-6 кл * 10 в=5*10^-5 дж
в) f=a/(x2-x1) =5*10^-5 дж / 0.10 м =5*10^-4 н
г) e1 = e/e -уменьшится в 7 раз
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).