В начальный момент времени, когда мяч находится в высшей точке, его кинетическая энергия равна нулю, тогда уравнение закона:
Ep + Ek = Ep + 0 = Ep = E
В момент приземления потенциальная энергия мяча равна нулю, тогда:
Ep + Ek = 0 + Ek = Ek = E
Можно сделать вывод, что максимальная потенциальная (в начальный момент времени) и максимальная кинетическая (в момент приземления) равны друг другу и механической:
Ep max = Ek max = E
Тогда можем найти скорость мяча в момент приземления:
Ep max = Ek max
mgh max = mv² max/2 | : m
gh max = v² max/2
v² max = 2gh max => v max = √(2gh max) = √(2*10*5) = √100 = 10 м/с
Очевидно, что энергии будут равны тогда, когда каждая из них будет равна половине общей, а точкой, в которой это равенство произойдёт, будет точка, которая делит максимальную высоту пополам:
Из формулы потенциальной энергии видно, что нулевой уровень её будет только в одной точке с координатами (0;0;0). чем дальше частица от этой точки, тем выше её потенциальная энергия. ещё одно замечание связано с тем, что работа силы поля равна разности потенциальных энергий в конце и начале пути. теперь можно подставить значения координат точек и посчитать потенциальную энергию двух этих положений U1=18; U2=18; => работа на данном пути равна нулю. это полно представить так, что вокруг точки (0;0;0) есть области с одинаковыми уровнями энергии, если бы в формуле энергии небыло бы двойки перед х^2 то эта область имела бы форму сферы, а так она будет иметь такую каплевидную фору симметричную относительно оси Ох. эта область как раз будет характеризоваться тем, что работа потенциальной силы в этой области будет равна нулю
Закон сохранения механической энергии:
Ep + Ek = E
В начальный момент времени, когда мяч находится в высшей точке, его кинетическая энергия равна нулю, тогда уравнение закона:
Ep + Ek = Ep + 0 = Ep = E
В момент приземления потенциальная энергия мяча равна нулю, тогда:
Ep + Ek = 0 + Ek = Ek = E
Можно сделать вывод, что максимальная потенциальная (в начальный момент времени) и максимальная кинетическая (в момент приземления) равны друг другу и механической:
Ep max = Ek max = E
Тогда можем найти скорость мяча в момент приземления:
Ep max = Ek max
mgh max = mv² max/2 | : m
gh max = v² max/2
v² max = 2gh max => v max = √(2gh max) = √(2*10*5) = √100 = 10 м/с
Очевидно, что энергии будут равны тогда, когда каждая из них будет равна половине общей, а точкой, в которой это равенство произойдёт, будет точка, которая делит максимальную высоту пополам:
E/2 = Ep max/2 = Ep = Ek
mgh max/2 = mv²/2 | : m
gh max/2 = v²/2 | * 2
v² = gh max => v = √(gh max) = √(10*5) = √(25*2) = 5√2 = 5*1,41 = 7,05 = 7,1 м/с
ответ: 10 м/с, примерно 7,1 м/с.