Пусть α — угол наклона плоскости. Сила нормального давления бруска на плоскость После увеличения угла наклона плоскости брусок остался в покое, значит, сила нормального давления бруска по прежнему рассчитывается по приведённой формуле. При увеличении угла косинус угла уменьшается, следовательно, сила нормального давления уменьшается. Коэффициент трения бруска о плоскость не зависит от угла наклона плоскости, а только от свойств поверхности, поэтому он не изменяется.
Для того, чтобы промежутки на шкале между рисками были больше, необходимо:
1. Использовать жидкость с более высоким коэффициентом объемного теплового расширения. Например, у ртути β = 18,1* 10⁻⁵ °С, а у спирта β = 108*10⁻⁵ °С То есть, при одной и той же площади поперечного сечения капилляра, одному мм при подъеме температуры на 1°С в ртутном термометре, будет соответствовать 6 мм при подъеме температуры на 1°С в спиртовом термометре.
2. Использовать в термометре капилляр с меньшей площадью поперечного сечения. Действительно, при увеличении объема на 1 мм³ и сечении капилляра 1 мм² получим перемещение края жидкости на 1 мм. Если при том же увеличении объема жидкости уменьшить сечение капилляра в 2 раза, то край жидкости переместится на 2 мм
Пусть α — угол наклона плоскости. Сила нормального давления бруска на плоскость После увеличения угла наклона плоскости брусок остался в покое, значит, сила нормального давления бруска по прежнему рассчитывается по приведённой формуле. При увеличении угла косинус угла уменьшается, следовательно, сила нормального давления уменьшается. Коэффициент трения бруска о плоскость не зависит от угла наклона плоскости, а только от свойств поверхности, поэтому он не изменяется.