М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
abdulaevamesed
abdulaevamesed
05.04.2020 07:04 •  Физика

ВАРИАНТ 3. 1. Какие примеры подтверждают, что давление в газе или жидкости передается равномерно по всем
направлениям:
1) воздушный шар взлетает
2) камень тонет в воде
3) давление атмосферы падает с высотой
4) выдуваемый мыльный пузырь принимает форму шара
2. В сосуде находится газ
1) давление в сосуде одинаково везде 2) наибольшее давление на дне сосуда
3) наименьшее давление на дне сосуда 4) наибольшее давление испытывакот стенки сосуда
3. Газ находится в сосуде. Масса и температура газа oстaкoтся постоянными, давление увеличилось.
Что можно сказать об объеме газа
1) объем увеличится
2) объем уменьшится
3) объем не изменится
4) нельзя дать однозначный ответ
4. Решить задачи:
1)Чему равно давление воды на глубине 12 м?
2) Автомобиль имеет массу 2,5т. Площадь соприкосновения одного колеса 125 см. Найти давление
автомобиля на землю.
3) Какое давление оказывает человек на землю, если его вес 800 H, а площадь подошвы каждой ноги
160 см.
4) Автомобиль оказывает давление на дорогу 200 кПа. Чему равна площадь соприкосновения колес с
дорого, если его вес 30000Н.​

👇
Открыть все ответы
Ответ:
rekrifcm
rekrifcm
05.04.2020

Объяснение:

1)

Пусть груз положили на правый (второй) груз.

Тогда:

m₁ = M

m₂ = M+Δm

Ускорение грузов вычислим по формуле (см. Физика-9, Кикоин):

a = g·(m₂ - m₁) / (m₁ + m₂)

a = g·(M + Δm -M) / (M + Δm + M) = g·Δm / (2·M + Δm)

a = 10·0,070 / (2·2+0,070) ≈ 0,17 м/с²

2)

Рассмотрим левый груз. Он движется вверх с ускорением a, тогда его вес:

P₁ = M·(g + a) = 2·(9,81 + 0,17) ≈ 19,96 Н

Для правого:

P₂ = (M+Δm)·(g + a) = (2+0,070)·(9,81 - 0,17) ≈ 19,96 Н

Вес - это сила, которая растягивает нить.

Значит, сила натяжения T = P₁ = P₂ = 19,96 Н

4,8(97 оценок)
Ответ:
viktoriag373
viktoriag373
05.04.2020

h = \frac{ s }{ ( 1/ \mu - 1/ tg{\alpha} )( \cos{\alpha} - \mu \sin{\alpha} )^2 }  , при условии:  arctg{(\mu)} < \alpha < arcCtg{(\mu)}  ;

*** если же переход от наклонной плоскости скруглённый, и:  R \gg 2h ( 1 - \frac{\mu}{tg{\alpha}} )  , то:

h = \frac{ s }{ 1/\mu - 1/tg{(\alpha)} }  .

Объяснение:

По закону сохранений энергии:

E_{ko} + E_{no} - A_\alpha = E_{k\alpha} + E_{n\alpha}  ;

где:

E_{ko} = 0  и  E_{no} = mgh  – начальные значения кинетической и потенциальной энергии;

E_{k\alpha} = \frac{mv_\alpha^2}{2}  и  E_{n\alpha} = 0  – значения кинетической и потенциальной энергии перед ударом о горизонтальную поверхность, в самом низу наклонной плоскости;

A_\alpha  – работа силы трения на наклонной плоскости;

A_\alpha = F_\alpha \cdot L  – работа

силы трения  F_\alpha = \mu mg \cos{\alpha}  на наклонной плоскости,

где:  L = \frac{h}{\sin{\alpha}}  – длина наклонной плоскости;

A_\alpha = \frac{ \mu mgh }{tg{\alpha}}  ;

В итоге:

mgh - \frac{ \mu mgh }{tg{\alpha}} = \frac{mv_\alpha^2}{2}  ;

(*) \frac{v_\alpha^2}{2} = gh ( 1 - \frac{\mu}{tg{\alpha}} )  ;

Из этого вытекает очевидное условие, что:

1 - \frac{\mu}{tg{\alpha}} 0  ;

1 \frac{\mu}{tg{\alpha}}  ;

tg{\alpha} \mu  , т.е. угол наклона должен быть более значения:  \alpha arctg{(\mu)}  , иначе груз вообще не сдвинется с места, и, разумеется, никакого расстояния  s  не пройдёт, а общая формула (данная в ответе) даст формально отрицательный ответ для высоты  h  .

Теперь «удар», т.е. переход с наклонной плоскости на горизонталь. Во время удара теряется вертикальная составляющая импульса  mv_{\alpha y} = mv_\alpha \sin{\alpha}  . Это происходит почти мгновенно (  \Delta t  ), под воздействием гасящей его чрезвычайно резко возрастающей на время гашения силы реакции опоры (и веса – соответственно)  N_{nep}  . Удар груза об опору в момент его перехода на горизонталь будем считать абсолютно неупругим, происходящим таким образом, что груз после него не подскакивает. Тогда можно записать, что:

mv_{\alpha y} - N_{nep} \Delta t = 0  ;

N_{nep} = \frac{mv_{\alpha y}}{\Delta t}  ;

За это время  \Delta t  груз так же заметно замедляется под воздействием чрезвычайно резко возрастающей на время гашения силы трения:

F_{nep} = \mu N_{nep} = \mu \cdot \frac{mv_{\alpha y}}{\Delta t}  ;

Соответственно, гасится и горизонтальный импульс:

mv_\alpha' = mv_{\alpha x} - F_{nep} \Delta t = mv_\alpha \cos{\alpha} - \mu \cdot \frac{mv_{\alpha y}}{\Delta t} \cdot \Delta t =

= mv_\alpha \cos{\alpha} - \mu mv_\alpha \sin{\alpha} = mv_\alpha ( \cos{\alpha} - \mu \sin{\alpha} )  ;

v_\alpha' = v_\alpha ( \cos{\alpha} - \mu \sin{\alpha} )  ;

Из последнего вытекает очевидное условие, что:

\cos{\alpha} - \mu \sin{\alpha} 0  ;

\cos{\alpha} \mu \sin{\alpha}  ;

\frac{\cos{\alpha}}{\sin{\alpha}} \mu  ;

tg{\alpha} < \frac{1}{\mu}  , т.е. угол наклона должен быть не более определённого значения:  \alpha < arctg\frac{1}{\mu} = arcCtg{(\mu)}  , иначе груз после удара о горизонтальную плоскость просто остановится, и никакого расстояния  s  не пройдёт, а общая формула (данная в ответе) даст формально отрицательный ответ для высоты  h  .

Кинетическая энергия груза после «ударного» торможения:

E_{k\alpha}' = \frac{1}{2} mv_\alpha'^2 = \frac{1}{2} mv_\alpha^2 ( \cos{\alpha} - \mu \sin{\alpha} )^2  ;

Далее, снова по закону сохранений энергии (с учётом неизменного значения потенциальной):

E_{k\alpha}' - A_{ocm} = E_{k}'  ;

где:

A_{ocm} = F_{mp} \cdot s = \mu mg s  – работа силы трения на горизонтальном участке до остановки;

а  E_{k}' = 0  – конечная кинетическая энергия (остановка);

\frac{1}{2} mv_\alpha^2 ( \cos{\alpha} - \mu \sin{\alpha} )^2 = \mu mg s  ;

\frac{v_\alpha^2}{2} = \frac{ \mu g s }{ ( \cos{\alpha} - \mu \sin{\alpha} )^2 }  ;

Учитывая (*):

gh ( 1 - \frac{\mu}{tg{\alpha}} ) = \frac{ \mu g s }{ ( \cos{\alpha} - \mu \sin{\alpha} )^2 }  ;

h ( 1 - \frac{\mu}{tg{\alpha}} ) = \frac{ \mu s }{ ( \cos{\alpha} - \mu \sin{\alpha} )^2 }  ;

h = \frac{ s }{ ( 1/ \mu - 1/ tg{\alpha} )( \cos{\alpha} - \mu \sin{\alpha} )^2 }  .

*** Если же переход от наклонной плоскости гладкий, и при этом: \frac{v_\alpha^2}{R} \ll g  , т.е. радиус перехода:  R \gg 2h ( 1 - \frac{\mu}{tg{\alpha}} )  , то «ударная» потеря – пренебрежима, и:  v_\alpha' = v_\alpha  , а, значит:

h = \frac{ \mu s }{ 1 - \mu Ctg{(\alpha)} } = \frac{ s }{ 1/\mu - 1/tg{(\alpha)} }  .

4,8(8 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ