Наноробот — технологія створення машин або роботів, розмір яких дорівнює або близький до мікроскопічного.
Наномашини знаходяться значною мірою, у фазі дослідження і розвитку. Ймовірно, що коли вони будуть побудовані, то їх будуть використовувати в медицині.
Основні сфери застосування нанороботів
Можливості застосування нанороботів практично безмежні. наприклад:
Лікування раку. Виявляти і знищувати ракові клітини більш точно і ефективно.
Механізм доставки ліків. Будувати механізми цільової доставки ліків для контролю і запобігання захворювань.
Медична візуалізація. Створення наночастинок, які збираються в певних тканинах і потім сканують тіло в процесі магнітно-резонансної томографії – це могло б виявити такі проблеми, як діабет.
Нові пристрої зондування. З практично безмежними можливостями налаштовувати зондувальні і скануючі характеристики нанороботів, ми могли б відкрити для себе наші тіла і більш ефективно вимірювати світ навколо нас.
Пристрої зберігання інформації. Біоінженер і генетик з Гарвардського інституту Вісса успішно зберіг 5,5 петабіт даних – близько 700 терабайт – в одному грамі ДНК, перевершивши попередній рекорд щільності даних в ДНК в тисячу разів.
Нові енергетичні системи. Нанороботи можуть зіграти певну роль в розробці більш ефективної системи використання поновлюваних джерел енергії. Або вони могли б зробити наші сучасні машини більш енергоефективними таким чином, що ті будуть потребувати в меншій кількості енергії для роботи з колишньою ефективністю.
Надміцні метаматеріали. В області метаматеріалів проводиться багато досліджень. Група з Каліфорнійського технологічного інституту розробила новий тип матеріалу, що складається з нанорозмірних розпірок, подібних розпіркам Ейфелевої вежі, який став одним з найміцніших і легковажних в історії.
шунт предназначен для того чтобы уменьшить ток через измерительный прибор в к раз и дать возможность прибору, имеющему допустимый ток I измерять ток в к раз больший, т.е. к*I . из тока величиной к*I только часть, равная I должна пройти через прибор с внутренним сопротивлением R, а все остальное (к*I - I =( к-1)*I ) - через шунт. значит сопротивление шунта должно быть равно R/(k -1).
при больших измеряемых токах шунт должен иметь возможность рассеять тепло, выделяемое согласно закона джоуля ленца, и при этом не изменить свое сопротивление.
подитожим:
1) сопротивление шунта должно быть точно в к-1 раз меньше чем сопротивление прибора
2) шунт должен иметь высокую допустимую рассеиваимую мощность
3) шунт должен иметь низкий температурный коэффициент сопротивления