Бесконечный заряженный цилиндр радиуса r имеет объемную плотность заряда ρ и окружен соосной с ним заземленной цилиндрической металлической поверхностью радиуса R. Найдите зависимость потенциала поля этой системы от расстояния до оси цилиндра.
Вращающийся заряженный цилиндр создает внутри себя магнитное поле. [1]
Бесконечный заряженный цилиндр радиуса г имеет объемную плотность заряда р и окружен соосной с ним заземленной цилиндрической металлической поверхность. [2]
Бесконечный заряженный цилиндр радиуса г имеет объемную плотность заряда р и окружен соосной с ним заземленной цилиндрической металлической поверхностью радиуса R. [3]
Внутри заряженного цилиндра имеется цилиндрическая полость. [4]
Однородно заряженный цилиндр радиуса R и высоты / г вращается с постоянной угловой скоростью ( о около оси, проходящей через среднюю точку цилиндра перпендикулярно его оси симметрии. Полный заряд равен Q. [5]
Поле заряженного цилиндра или прямой. Очень часто напряженность поля заряженных тел находят, применяя теорему Остроградского - Гаусса. В частности, с ее легко найти поле сферы, бесконечной плоскости ( но не пластинки. [6]
Толмен, используя заряженный цилиндр, показал, что по вызываемому магнитному эффекту колеблющийся заряд эквивалентен переменному току. [7]
Вектор электрического смещения внутри бесконечно длинного заряженного цилиндра кругового сечения, выполненного из диэлектрика, меняется в функции расстояния от оси цилиндра г по закону D1 r k1r, а вне цилиндра - по закону D. Окружающей средой является воздух. [8]
На некотором расстоянии от оси равномерно заряженного цилиндра находятся две молекулы равной массы. Расстояние между зарядами другой молекулы определяется соотношением qEkK, где Е - средняя напряженность поля, действующего на молекулу, k - постоянный коэффициент. В начальный момент электрические моменты молекул одинаковы, а их скорости равны нулю. [9]
Изменение потенциала в пространстве между двумя заряженными цилиндрами в точности эквивалентно другому физическому явлению, а именно упругой мембраны принимать ту или иную форму. [10]
Определить электростатическое поле, расположенное вне двух разноименно заряженных цилиндров г - 5 4 и г 5 4, если разность их потенциалов равна единице. [11]
Мы уже решали электростатическую задачу об однородно заряженном цилиндре. [12]
Аналогично решению задачи 69 убеждаемся, что поле внутри заряженного цилиндра равно нулю
При попутном ветре, очевидно, относительно земли скорость голубя равна сумме скорости ветра υ и скорости голубя в отсутствие ветра υ1 , а расcтояние s между будет равно: s = ( υ1 + υ) t1. ( 1) при встречном ветре это же расстояние s птица преодолеет с относительной скоростью, равной разности скоростей голубя и ветра и, соответственно, s = ( υ1 - υ) t2. ( 2) в отсутствие ветра расстояние между голубь пролетит за время t = s/ υ1. ( 3 ) (конечно, (3) можно было записать в том же виде как и два предыдущих соотношения, т.е. s = υ1 t.) решена: мы имеем 3 уравнения с тремя неизвестными, остается только их решить. решать можно, что называется, в любом порядке. приравняв (1) и (2), т.е. исключив расстояние s , мы свяжем скорости υ и υ1: ( υ1 + υ) t1 = ( υ1 - υ) t2 . раскрываем скобки, вновь группируя, получаем: υ1 t1 + υ t1 - υ1 t2 + υ t2 = 0, или υ( t1 + t2 ) = υ1( t2 - t1 ). откуда υ = υ1(t2- t1)/ (t1+ t2). ( 4) далее можно подставить (4) в (2): s = ( υ1 - υ1(t2- t1)/ (t1+ t2)) t2 = υ12t1t2/ (t1+ t2). (5) осталось подставить (5) в (3) и выразить искомое t1: t = 2t1t2/(t1+ t2). отсюда окончательно: t1= t2t/(2t2- t). (6)вычисляем: t1= 75 мин ∙ 60 мин /(2∙75 мин - 60 мин) = 50 мин.ответ: 50 мин.
За сколько растает кубик льда в комнате За сколько растает кубик льда в комнате Температура = 25*C Кубики (разные) размером: 1*1 см 2*2 см 5*3 см Не соприкасаются с поверхностями (в невесомости)
Прежде всего, следует сказать, что точный и однозначный ответ на поставленный вопрос получить крайне сложно. Исходных условий для этого явно недостаточно. Совершенно очевидно, что результат зависит не только от заданной в условии температуры воздуха, но и от множества других факторов - начальной температуры льда, скорости движения воздуха, его влажности, давления, наличия источников инфракрасного излучения (теплового излучения) вблизи льда, химических и физических свойств льда (одних только типов кристаллической структуры льда порядка десяти штук). Таким образом, чтобы получить хоть в какой-то степени приблизительный ответ, нам придется сделать ряд допущений.
Допустим, что вблизи нет источников теплового излучения, начальная температура льда равна нулю градусов, скорость потока воздуха соответствует скорости средней конвекции воздуха в закрытом помещении при приблизительно нормальных условиях (влажности, температуры, давлении). Тогда задача наша сводится к тому, что мы вычислим массу льда через его заданный объем и табличную плотность. Далее, умножив массу на табличную удельную теплоту плавления льда, найдем количество теплоты, которую воздух должен отдать для плавления такой массы льда. Количество этой теплоты, с другой стороны, равно произведению удельной теплоемкости воздуха (табличная) на массу воздуха. А массу воздуха мы найдем умножив удельную плотность воздуха (см.таблицы) на его объем. Объем же воздуха равен произведению площади поверхности льда на скорость потока воздуха (конвекции) при нормальных условиях. Очевидно, что площадь поверхности льда в процессе эксперимента уменьшается, ведь лед тает, поэтому можно взять среднюю площадь равной половине начальной. Скорость конвекции воздуха можно нагуглить. Ну, вот и все. Можно приступать к арифметическим действиям, чтобы получить численный ответ. Невозможно рассчитать, недостаточно данных. При одном и том же объеме кусок льда в форме кирпича будет таять медленнее, чем пласт льда толщиной 1мм.
Не объем нужно знать, а площадь поверхности. А так же относительную влажность в помещении. Не большой кусочек за 15-20 минут,
При ста градусах за 2-6 минут. Тоже зависит от кусочка и размера.
Вращающийся заряженный цилиндр создает внутри себя магнитное поле. [1]
Бесконечный заряженный цилиндр радиуса г имеет объемную плотность заряда р и окружен соосной с ним заземленной цилиндрической металлической поверхность. [2]
Бесконечный заряженный цилиндр радиуса г имеет объемную плотность заряда р и окружен соосной с ним заземленной цилиндрической металлической поверхностью радиуса R. [3]
Внутри заряженного цилиндра имеется цилиндрическая полость. [4]
Однородно заряженный цилиндр радиуса R и высоты / г вращается с постоянной угловой скоростью ( о около оси, проходящей через среднюю точку цилиндра перпендикулярно его оси симметрии. Полный заряд равен Q. [5]
Поле заряженного цилиндра или прямой. Очень часто напряженность поля заряженных тел находят, применяя теорему Остроградского - Гаусса. В частности, с ее легко найти поле сферы, бесконечной плоскости ( но не пластинки. [6]
Толмен, используя заряженный цилиндр, показал, что по вызываемому магнитному эффекту колеблющийся заряд эквивалентен переменному току. [7]
Вектор электрического смещения внутри бесконечно длинного заряженного цилиндра кругового сечения, выполненного из диэлектрика, меняется в функции расстояния от оси цилиндра г по закону D1 r k1r, а вне цилиндра - по закону D. Окружающей средой является воздух. [8]
На некотором расстоянии от оси равномерно заряженного цилиндра находятся две молекулы равной массы. Расстояние между зарядами другой молекулы определяется соотношением qEkK, где Е - средняя напряженность поля, действующего на молекулу, k - постоянный коэффициент. В начальный момент электрические моменты молекул одинаковы, а их скорости равны нулю. [9]
Изменение потенциала в пространстве между двумя заряженными цилиндрами в точности эквивалентно другому физическому явлению, а именно упругой мембраны принимать ту или иную форму. [10]
Определить электростатическое поле, расположенное вне двух разноименно заряженных цилиндров г - 5 4 и г 5 4, если разность их потенциалов равна единице. [11]
Мы уже решали электростатическую задачу об однородно заряженном цилиндре. [12]
Аналогично решению задачи 69 убеждаемся, что поле внутри заряженного цилиндра равно нулю