1) Ek0 = Ek + Ep, Ek = Ep, Ek0 = 2Ep, mv0^2 / 2 = 2mgh, h = v0^2 / (4g),
h = 49^2 / 4*9.8 = 61,25 м
2) mv0^2 / 2 = mgh + mv^2 / 2, v = корень(v0^2 - 2gh) = корень(15^2 - 2*10*10) = 5м/с
3) mv0^2 / 2 = mgh + mv^2 / 2, v = v0/2, mv0^2 / 2 = mgh + mv0^2 / 8, 3mv0^2 / 8 = mgh, h = 3v0^2 / 8g, h = 3*10^2 / 8*10 = 3.75 м
4) A = Ek - Ek0 = mv^2 / 2 - mv0^2 / 2 = m/2(v^2 - v0^2), A = 0.5 кг/2(16^2 - 20^2) = -36 Дж
5) mv^2 / 2 - mgh = -FS, F = m/s(gh - v^2 / 2), F = 60/500(10*10 - 8^2 / 2) = 8.16 H
6) Ek0 = Ek + Ep, Ek = Ep, Ek0 = 2Ep, mv0^2 / 2 = 2mgh, h = v0^2 / (4g), h = 16^2 / 4*9.8 = 6,5 м
Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор.
Объяснение: