История применения радиойода в тиреоидологии начинается в ноябре 1935 года с совместного исследования Массачусетского Технологического Института (MIT) и отделения тиреоидологии больницы штата Массачусетс (MGH) в Бостоне. Президент MIT, доктор Карл Комптон в лекции под названием «Что физика может делать для биологии и медицины» поднял во возможной пригодности радиойода. С 1937 года для изучения щитовидной железы использовался I-128. В 1938 году при бомбардировке теллура дейтронами были получены новые изотопы йода: I-130 (T1/2=12,6 часа) и I-131 – (8,14 суток). В дальнейшем было установлено, что I-131 может быть получен в больших количествах в реакторе. I-131 по физическим свойствам оказался наиболее удобным как для теоретических исследований, так и для диагностики и терапии и получил в медицине широкое рас Использование радиоактивных изотопов йода в качестве меченых атомов основано на том, что, отличаясь по физическим свойствам от природного элемента, они полностью соответствуют ему по химическим свойствам, и участвуют в обменных процессах так же, как стабильный йод. Испускаемые I-131 гамма-кванты и бета-частицы позволяют с радиометрических приборов точно путь радиоактивного йода в организме и определить его содержание в различных органах и системах, а также моче, слюне и других выделениях. В январе 1941 года MGH-MIT группа впервые провела терапевтическое испытание радиоактивного йода (I-130) в лечении гипертиреоза. Это сделало лечение гипертиреоза более практичным, а использование I-130 быстро рас и на лечение карцином щитовидной железы. Успехи радиойодтерапии в лечении гипертиреоза и рака щитовидной железы нашли отражение в большом количестве публикаций.
Мощность P = 6 Вт, площадь пластины S = 10 см², коэффициент отражения R = 0.6
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине. - Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п - Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади: p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа