ответ: на 54°С
Объяснение:
До удара о стену пуля обладала кинетической энергией Ек1. После удара часть энергии пули перешла во внутреннюю и пошла на нагревание, то есть превратилась в теплоту Q, а часть осталась кинетической энергией как Ек2 (т. к. пуля продолжила двигаться). По закону сохранения энергии:
Ек1 = Ек2 + Q, где Q — выделевшееся количество теплоты.
Тогда Q = Eк1 - Ек2 = (m*v²)/2 - (m*v²)/2, где m — масса пули, v — скорость пули
Q=(m*320²)/2 - (m*220²)/2 = 51 200*m - 24 200*m = 27 000*m (не можем подставить массу пули, т. к. она нам не дана)
В условии сказано, что на нагревание пули пошло только 80% выделившейся теплоты, а именно
Q(нагревания) = Q*0,8 = 21 600*m
Известно, что
Q(нагревания) = c*m*ΔT, где с — удельная теплоёмкость материала, m — масса, ΔT — искомое изменение температуры.
Выразим из этой формулы изменение температуры:
ΔT = Q(нагревания)/(с*m) = 21 600*m/c*m = 21 600/c (при делении масса сократилась)
Из специальной таблицы найдём, что уделтная теплоёмкость меди с равна 400 (Дж/(кг*°С). Подставив это значение в формулу, получим
ΔТ = 21 600/400 = 54 (°С)
ответ: на 54°С
Человек толкает себя вперёд с силой F, тогда по третьему закону Ньютона на ногу действует сила F в противоположном направлении, т.е. назад. Также существует сила трения Fтр, направленная вперёд. Записываем второй закон Ньютона:
Максимальная сила трения равна , поэтому максимальное ускорение, которое можно получить, есть
2) Теперь поговорим о том, что же происходит в задаче. Спортсмен разгоняется с ускорением a (в течение времени τ), в момент отрыва от земли добавляется вертикальная составляющая скорости (горизонтальная остается той же), спортсмен летит по параболе и, наконец, приземляется.
Горизонтальная компонента скорости не меняется и остается равной Vx = μgτ, тогда длина прыжка будет равна Vx * T, где T - время прыжка. Остается найти T.
3) Итак, задача превратилась в стандартную: с некоторой скоростью подбросили вверх нечто (нечто = спортсмен в данном случае), это нечто достигло высоты h и упало обратно. Необходимо найти время полёта T.
Задача решается, например, так: понятно, что искомое время - удвоенное время падения t с высоты h (время подлёта к верхней точки такое же, что и время спуска, а время спуска найти проще). t найдем из равенства
Отсюда
4) Остается получить ответ.