В воздухе вес покоящегося тела равен силе тяжести, действующей на него (выталкиванием из газа пренебрегаем в силу маленькой плотности воздуха). ( - плотность тела) В воде из силы тяжести вычитается еще сила Архимеда. И вот здесь будем внимательными. По определению: вес тела есть сила, с которой оно действует на опору или подвес. Таким образом, вовсе не обязательно, что эта сила направлена книзу. Поэтому у нас два варианта: 1) сила Архимеда меньше силы тяжести, и тело тонет в воде, стало быть, чтобы удержать его в покое, необходима сила, направленная кверху; 2) сила Архимеда больше силы тяжести, и тело плавает, соответственно, нужно его топить силой, направленной книзу. Разберемся отдельно с первым и вторым случаями.
1) ( - плотность керосина) Подставим , получится . Отсюда: . Ну и все. Подставляем только что найденную комбинацию в самое первое уравнение и выражаем из него неизвестную плотность:
2) Все аналогично, только . Соответственно, ответ будет с другим знаком около , то есть,
Подадим на собирающую линзу параллельный световой пучёк. Свет сфокусируется в фокусе, образуя "по пути к нему" конус. Если проблематично измерить размеры линзы, то на двух различных расстояниях от неё измеряем диаметр сечения конуса (проецируем на бумажку и измеряем), а после рассчитываем фокусное расстояние как высоту соответствующего равнобедренного треугольника, основанием которого является линза. Это сделать не сложно, т.к. нам известны основания двух других подобных ему треугольников. P.S. придётся решить линейное уравнение)
В воде из силы тяжести вычитается еще сила Архимеда. И вот здесь будем внимательными. По определению: вес тела есть сила, с которой оно действует на опору или подвес. Таким образом, вовсе не обязательно, что эта сила направлена книзу. Поэтому у нас два варианта: 1) сила Архимеда меньше силы тяжести, и тело тонет в воде, стало быть, чтобы удержать его в покое, необходима сила, направленная кверху; 2) сила Архимеда больше силы тяжести, и тело плавает, соответственно, нужно его топить силой, направленной книзу.
Разберемся отдельно с первым и вторым случаями.
1)
Подставим
Отсюда:
Ну и все. Подставляем только что найденную комбинацию в самое первое уравнение и выражаем из него неизвестную плотность:
2) Все аналогично, только
Соответственно, ответ будет с другим знаком около