Перiод обертання T(c)T(c) – час, за який тiло здiйснює повний оберт. Якщо за деякий час tt було здiйснено NN обертiв, то перiод:T=tNT=tNЧастота обертання ν(c−1,Гц)ν(c−1,Гц) – кiлькiсть повних обертiв, якi здiйснить тiло за одиницю часу. Якщо за деякий час tt було здiйснено NN обертiв, то частота:ν=Nt=1Tν=Nt=1TКут повороту ΔφΔφ (рад) – кут, на який повертається радiус кола, спрямований з центра до дослiджуваної точки за час руху тiла ΔtΔt. У секцiї 11 ми розглядали зв’язок кута в радiанах із довжиною дуги та радiусом кола.φ=lR⇒l=Rφφ=lR⇒l=RφЛiнiйна швидкiсть υυ (м/с) – дорiвнює довжинi дуги, яку проходить тiло за одиницю часу tt. Лiнiйна швидкiсть завжди спрямована по дотичнiй до траєкторiї, а у випадку рiвномiрного руху по колу рiвна за модулем у кожнiй точцi. Тiло здiйснює повний оберт, тобто проходить довжину дуги, що дорiвнює довжинi кола, за час TT (перiод). Довжина кола L=2πRL=2πR.υ=LT=2πRT=2πνRυ=LT=2πRT=2πνRКутова швидкiсть ω(рад/с)ω(рад/с) – дорiвнює вiдношенню кута повороту до часу ΔtΔt, за який цей поворот було здiйснено. Повний оберт вiдповiдає кутові повороту 2π2π. Час, за який здiйснюється повний оберт, – перiод TT.ω=ΔφΔt=2πT=2πνω=ΔφΔt=2πT=2πνЗв’язок мiж лiнiйною та кутовою швидкiстю Якщо порiвняти одержані вирази для лiнiйної (υ=2πνR)(υ=2πνR) та кутової швидкості (ω=2πν)(ω=2πν), видно, що зв’язок мiж цими швидкостями:υ=ωRυ=ωRЦей вираз також випливає зі зв’язку кута повороту з довжиною дуги i радiусом:l=Rφ⇒|:t |l=Rφ⇒|:t |⇒lt⇒lt=Rφt⇒|υ=Rφt⇒|υ=lt,ω=lt,ω=φt|=φt|⇒υ⇒υ=ωR=ωRДоцентрове прискорення aД(м/c2)aД(м/c2) – прискорення, що в будь-якiй точцi спрямоване перпендикулярно до швидкостi. Під час рівномірного руху по колу радiуса RR зi швидкiстю υ.υ.aД=υ2RaД=υ2RЯкщо цiкавитесь детальним виведенням цiєї формули, розберiть наступний пiдрозділ.
c1=4,2 кДж/(кг*К), λ=330000 Дж/кг, V1=3,7 л=3,7*10*-3 м³, t1= 18°С, m2=0,5 кг, t2= 0°С. t= 8°С. m-? Вода в сосуде отдает количество теплоты Q1=c1ρV1(t1-t). Лед, содержащийся в мокром снеге получит количество теплоты для плавления Q2=λ(m2-m) и нагревания получившейся воды от t2= 0°С до t= 8°С Q3=c1(m2-m)(t-t2). Вода, содержащаяся в мокром снеге получает количество теплоты для нагревания от t2= 0°С до t= 8°С Q4=c1m(t-t2). Уравнение теплового баланса Q1=Q2+Q3+Q4. c1ρV1(t1-t)=λ(m2-m)+c1(m2-m)(t-t2)+c1m(t-t2). c1ρV1(t1-t)=λm2-λm+c1m2(t-t2)-c1m(t-t2)+c1m(t-t2). c1ρV1(t1-t)=λm2-λm+c1m2(t-t2). λm=λm2+c1m2(t-t2)-c1ρV1(t1-t). m=(λm2+c1m2(t-t2)-c1ρV1(t1-t))/λ. m=(330000*0,5+4200*0,5*8-4200*3,7*10)/330000 = (165000+16800-155400)/330000 = 0,08 кг= 80 г.
Тiло здiйснює повний оберт, тобто проходить довжину дуги, що дорiвнює довжинi кола, за час TT (перiод). Довжина кола L=2πRL=2πR.υ=LT=2πRT=2πνRυ=LT=2πRT=2πνRКутова швидкiсть ω(рад/с)ω(рад/с) – дорiвнює вiдношенню кута повороту до часу ΔtΔt, за який цей поворот було здiйснено. Повний оберт вiдповiдає кутові повороту 2π2π. Час, за який здiйснюється повний оберт, – перiод TT.ω=ΔφΔt=2πT=2πνω=ΔφΔt=2πT=2πνЗв’язок мiж лiнiйною та кутовою швидкiстю Якщо порiвняти одержані вирази для лiнiйної (υ=2πνR)(υ=2πνR) та кутової швидкості (ω=2πν)(ω=2πν), видно, що зв’язок мiж цими швидкостями:υ=ωRυ=ωRЦей вираз також випливає зі зв’язку кута повороту з довжиною дуги i радiусом:l=Rφ⇒|:t |l=Rφ⇒|:t |⇒lt⇒lt=Rφt⇒|υ=Rφt⇒|υ=lt,ω=lt,ω=φt|=φt|⇒υ⇒υ=ωR=ωRДоцентрове прискорення aД(м/c2)aД(м/c2) – прискорення, що в будь-якiй точцi спрямоване перпендикулярно до швидкостi. Під час рівномірного руху по колу радiуса RR зi швидкiстю υ.υ.aД=υ2RaД=υ2RЯкщо цiкавитесь детальним виведенням цiєї формули, розберiть наступний пiдрозділ.