Вместо "a" используем ускорение свободного падения:
g = V²/R
Выражая из этой формулы V, получим формулу для первой космической скорости:
V² = gR
V = √(gR), где g - это примерно 9,8 м/с², а R - радиус Земли.
По условию скорость спутника в 2 раза меньше первой космической:
v = 0,5*V(1-я косм.), значит:
v = 0,5*√(gR) - поместим 0,5 под корень:
v = √(0,5²*gR)
C другой стороны есть формула закона всемирного тяготения:
Fтяг = GMm/R², где G - гравитационная постоянная, M - масса Земли, а R - её радиус. Приравняем эту формулу к формуле силы тяжести (т.к. обе, по сути, описывают одно и то же явление, хоть сила тяжести и является частным случаем силы тяготения):
Fтяг = Fтяж
GMm/R² = mg - разделим обе части на "m"
GM/R² = g - это уравнение для "g". Подставим его в выражение для скорости спутника:
v = √(0,5²*gR) = √(0,5²*(GM/R²)R) = √(0,5²*GM/R) - очевидно, что ни к G, ни к M значение 0,5² не может относится, т.к. G - это постоянная, а M - масса Земли, которая вряд ли ни с того ни с сего уменьшилась. Тогда остаётся только радиус. Но земной радиус тоже не может уменьшаться или увеличиваться из-за того, что какой-то спутник летает вокруг Земли. Поэтому вернёмся к формуле для "g":
g = GM/R² - это g, которое у самой поверхности Земли. Чем дальше от поверхности, тем больше становится расстояние, и тем меньше становится g. Получается, что для тел, которые находятся на уже значительном расстоянии от Земли, один лишь радиус использовать нельзя - надо использовать сумму радиуса и высоты:
g = GM/(R + h)² - именно эту формулу мы используем для выражения скорости спутника:
Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так? Сила трения Fтр = N * mu = m * g * mu Ускорение (как учил старина Ньютон) а = F / m. В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения. х = ( v^2 - u^2 ) / (2a) 16 = (121 - u^2) / 6 u^2 = 25 u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента: t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.
– масса любой порции анилина. Весь анилин, соответственно: – масса сосуда – начальная температура – температура нагретого анилина – конечная температура
Теперь подставляем (II), (III) и (IV) в (I) и получаем:
;
Отсюда:
;
;
;
Массовая дробь равна ; Температурная дробь равна 10. Итого, тёплоёмкость латуни умножается на 5 и получается 1900 – для анилина.
***** ЗАДАЧА [2] ПРО ГОРЕЛКУ *****
Дж/кгС – теплоёмкость воды Дж/кгС – теплоёмкость меди МДж/кг – теплота сгоряния спирта – масса сосуда – масса воды – масса спирта – начальная температура – КПД – искомая конечная температура
Уравнение тёплового баланса:
(I) (если вода не закипит, иначе ответ: 100 грудусов), где: – теплота, выделяемая сжигаемым спиртом – теплота на нагрев меди – теплота на нагрев воды
Перепишем (I) через формулы тепловых явлений сгорания и нагревания:
(I*) ;
;
отсюда: ; В итоге: ;
Остались только арифметические расчёты, которые показывают, что температура ниже 100 грудусов. ответ можете расчитать сами. Он близок к 100, но отличается от 100.
Дано:
v = 0,5*V(1-я косм.)
h - ?
Есть формула для центростремительного ускорения:
a = V²/R
Вместо "a" используем ускорение свободного падения:
g = V²/R
Выражая из этой формулы V, получим формулу для первой космической скорости:
V² = gR
V = √(gR), где g - это примерно 9,8 м/с², а R - радиус Земли.
По условию скорость спутника в 2 раза меньше первой космической:
v = 0,5*V(1-я косм.), значит:
v = 0,5*√(gR) - поместим 0,5 под корень:
v = √(0,5²*gR)
C другой стороны есть формула закона всемирного тяготения:
Fтяг = GMm/R², где G - гравитационная постоянная, M - масса Земли, а R - её радиус. Приравняем эту формулу к формуле силы тяжести (т.к. обе, по сути, описывают одно и то же явление, хоть сила тяжести и является частным случаем силы тяготения):
Fтяг = Fтяж
GMm/R² = mg - разделим обе части на "m"
GM/R² = g - это уравнение для "g". Подставим его в выражение для скорости спутника:
v = √(0,5²*gR) = √(0,5²*(GM/R²)R) = √(0,5²*GM/R) - очевидно, что ни к G, ни к M значение 0,5² не может относится, т.к. G - это постоянная, а M - масса Земли, которая вряд ли ни с того ни с сего уменьшилась. Тогда остаётся только радиус. Но земной радиус тоже не может уменьшаться или увеличиваться из-за того, что какой-то спутник летает вокруг Земли. Поэтому вернёмся к формуле для "g":
g = GM/R² - это g, которое у самой поверхности Земли. Чем дальше от поверхности, тем больше становится расстояние, и тем меньше становится g. Получается, что для тел, которые находятся на уже значительном расстоянии от Земли, один лишь радиус использовать нельзя - надо использовать сумму радиуса и высоты:
g = GM/(R + h)² - именно эту формулу мы используем для выражения скорости спутника:
g = v²/(R + h)
v² = g*(R + h)
v = √(g*(R + h)) = √((GM/(R + h)²)*(R + h)) = √(GM/(R + h))
и приравняем её к формуле для половины первой космической скорости, только теперь уже не будем помещать 0,5 под корень:
√(GM/(R + h)) = 0,5√(GM/R) - теперь можно выразить h и найти значение:
√(GM/(R + h)) = 0,5√(GM/R)
√(GM)/√(R + h) = 0,5√(GM)/√R | : √(GM)
1/√(R + h) = 0,5/√R
√(R + h) = 1/(1/(2√R)) | ² - возведём обе части в квадрат
R + h = 4R
h = 4R - R = 3R
Радиус Земли примерно равен 6400 км, тогда:
h = 3R = 3*6400 = 19200 км или 1,92*10^7 м
Проверим:
Масса Земли примерно равна 6*10^(24) кг, тогда:
v = √(GM/(R + h)) = √(6,67*10^(-11)*6*10^(24) / (6,4*10^6 + 1,92*10^7)) = √(6,67*6*10^(13) / (6,4*10^6 + 19,2*10^6)) = √(40,02*10^(13) / (10^6*(6,4 + 19,2))) = √(40,02*10^7/25,6) = 3953,835163 = 3954 м/с
V(1-я косм.) = 0,5√(GM/R) = 0,5*√(6,67*10^(-11)*6*10^(24)/6,4*10^6) = 0,5*√(40,02*10^7/6,4) = 0,5*7907,6703... = 0,5*7908 = 3954 м/с
Всё сходится.
ответ: 19200 км или 1,92*10^7 м.