Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.
Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.
Так же есть:
Потенциальная энергия :
Кинетическая энергия
Заметим, что при прохождении точки π/2 шарик должен иметь неотличимое натяжение нити, иначе она согнется и полный оборот не получится.
Тогда по второму закону Ньютона имеем: mg = ma, т.е. a = g
Центростремительное ускорение шарика в точке π/2: g = V2^2 / R => V2^2 = g R
Теперь прибегнем к закону сохранения энергии (в точке -π/2 и π/2). Получаем (V1 - начальная скорость шарика, которую мы ищем):
mV1^2 / 2 = mV2^2/2 + mg2R
mV1^2 / 2 = (mgR + 4mgR) / 2
mV1^2 = 5mgR
V1 = √5gR