для начала необходимо получить зависимость силы натяжения нити T от угла наклона к горизонтали α, т.е. функцию T(α)
разумно в данном случае будет направить ось X горизонтально по движению бруска, а ось Y вертикально вверх. тогда, написав уравнения динамики в проекциях на них, получим:
X: T cosα = u N
Y: N + T sinα = mg
решая эту систему уравнений (например, выражая из второго уравнения N и подставляя в первое), получим искомую функцию:
T(α) = (u mg)/(u sinα + cosα)
заметим, что числитель данной функции есть величина постоянная, решающую роль играет только знаменатель, т.к. только он зависит от угла. проще всего, по-моему, будет ввести дополнительную функцию ψ(α) = u sinα + cosα. очевидно, сила натяжения минимальна в том случае, когда функция ψ(α) принимает наибольшее значение, при этом найденный угол α* (при котором достигается максимум функции ψ(α)) будет являться искомым
условия максимума:
(dψ)/(dα) = 0; (d²ψ)/(dα²) < 0
найдем первую производную:
(dψ)/(dα) = u cosα - sinα.
ясно, что первая производная обращается в ноль при значении u = tgα. мы можем предположить, что найденный угол α* = arctg(u) и есть искомый
найдем вторую производную:
(d²ψ)/(dα²) = - u sinα - cosα < 0
действительно, u - величина положительная, а угол между нитью и горизонталью лежит на отрезке α ∈ [0; π/2). следовательно, найденный угол α* - искомый. подставим значение u = tgα* в функцию T(α):
T(α*) = Tmin = (u mg)/(cosα [1 + u²])
из тригонометрии: cosα = 1/√[1+ctg²α*] = u/√[1+u²]
окончательно получим:
Tmin = (u mg)/√[1+u²]
g=10Н/кг
p = 1 × 10^4 Па= 10000Па
S= 4000см^2 = 0,4м^2
p= F/S; S = 2S (Так как у трактора 2 гусеницы); F = p×S = 10000Па×0,8м^2= 8000Н
F =m×g; m=F/g=8000Н/10Н/кг= 800кг
ответ: m=800кг.