Движение тела можно разделить на фазу равномерно замедленного и фазу равномерно ускоренного движения. В первой фазе, начав движение со скоростью v0, тело проделывает путь
Ко времени t1 происходит остановка тела, т.е.
Соответственно,
и
Во второй фазе тело проделывает путь
,
набрав при этом скорость
Соответственно,
и
Поскольку тело возвращается в исходную точку, s1 = s2, следовательно, имеем
Ускорение, с которым движется тело, зависит от суммы сил, действующих на него:
.
Поскольку масса одна и та же, из предыдущей формулы следует, что
F складывается из векторов компоненты силы тяжести, параллельной поверхности, Fp и силы трения f. При этом
,
а f по закону Амонтона-Кулона
Однако в первой фазе сила трения действует в том же направлении, что и Fp, так как тело движется против Fp, а во второй фазе -- в противоположном. Соответственно, в первой фазе модуль вектора F равен сумме этих двух сил, а во второй -- их разности. Таким образом,
В сопротивлении материалов принято рассчитывать деформации в относительных единицах:
Между продольной и поперечной деформациями существует зависимость
где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.
Закон Гука
В пределах упругих деформаций деформации прямо пропорциональны нагрузке:
где F — действующая нагрузка; к — коэффициент. В современной форме:
Получим зависимость
где Е — модуль упругости, характеризует жесткость материала.
В пределах упругости нормальные напряжения пропорциональны относительному удлинению.
Значение Е для сталей в пределах (2 – 2,1) • 105МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:
Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы.
Относительное удлинение
В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:
где
Δl — абсолютное удлинение, мм;
σ — нормальное напряжение, МПа;
l — начальная длина, мм;
Е — модуль упругости материала, МПа;
N — продольная сила, Н;
А — площадь поперечного сечения, мм2;
Произведение АЕ называют жесткостью сечения