При нормальном падении света на дифракционную решетку, синус угла под которым будет виден некоторый интерференционный максимум дифракционной решетки можно найти по формуле sin(a) = m *L/S; где (а) – угол, под которым виден какой-либо максимум решетки; m – порядковый номер максимума, m = 3; L – длина волны света, L = 500 нм; S – период дифракционной решетки, S = 6 мкм. При вычислении период решетки и длину волны следует применять в одной и той же размерности. Выразим и то и другое в мкм. Тогда sin(a) = 3 * 0,5/6 = 0,25. Угол (а) под которым будет виден максимум 3-го порядка (а) = arcsin0,25 = 14,4775… градусов.
Тело брошено горизонтально. Т.е. его начальная вертикальная скорость равна 0. По вертикали движение тела будет равноускоренное (падение вниз). По горизонтали - равномерное со скоростью 10 м/с. Сопротивлением воздуха пренебрегаем. Высота падения будет равна: H=(g*t∧2)/2. Расстояние полета по горизонтали будет равно L=Vo*t. По условию нужно приравнять высоту и дальность полета: H=L. Vo*t=(g*t∧2)/2. Отсюда: (g*t∧2)/2-Vo*t=0; t*(g*t/2-Vo)=0. Отсюда t=0 или g*t/2-Vo=0. g*t/2=Vo. t=2*Vo/g=2*10/10=2 сек. Решение t=0 отбрасываем как тривиальное (т.е. при этом и высота полета, и дальность равны тоже нулю, что не несет смысла). Тогда можно посчитать высоту H=10*4/2=20м. Другой вариан решения - подставить выражение для времени полета в выражение для высоты: H=(g*t∧2)/2=(g*4*Vo*Vo/(g*g))/2=2*Vo*Vo/g=2*10*10/10=20 м.
ответ:750
Объяснение:
P=F/S= 37500/0.02=750