Если шарик сплошной, то его плотность должна быть равна плотности меди. 8875 кг/м3 — плотность шарика (ну просто масса, делённая на объём), а у меди — 8900 кг/м3.
А теперь проведём простую аналогию.
Пускай V — объём шарика сплошного, а V_o — полого.
Логично, что V \ \textgreater \ V_o (объём сплошного шара больше, чем у полого).
Тогда сравним плотности:
p_i = \frac{m_i}{V_i}.
Чем меньше объём, тем больше плотность. Следовательно у полого шарика плотность больше, чем у сплошного.
Вернёмся к нашей задаче. Пускай шарик полый, тогда его плотность больше, чем плотность меди. Но у нас у шарика плотность меньше, чем у меди. Следовательно полым он быть не может.
Размер кубика H = 9 см погружение кубика в воде k = 0,8 объема плотность воды p1 = 1000 кг/м3 плотность кубика p2 долита жидкость с плотностью р3 высота слоя жидкости h = 8 см и совпадает с верхней гранью кубика
закон архимеда для кубика плавающего в воде гласит что масса кубика равна массе вытесненой воды S*H*p2=S*(H*k)*p1 значит р2 = k*p1
закон архимеда для кубика плавающего в смеси двух жидкостей гласит что масса кубика равна массе вытесненых жидкостей S*H*p2=S*(H-h)*p1+S*h*p3 значит H*p2=(H-h)*p1+h*p3
Если шарик сплошной, то его плотность должна быть равна плотности меди. 8875 кг/м3 — плотность шарика (ну просто масса, делённая на объём), а у меди — 8900 кг/м3.
А теперь проведём простую аналогию.
Пускай V — объём шарика сплошного, а V_o — полого.
Логично, что V \ \textgreater \ V_o (объём сплошного шара больше, чем у полого).
Тогда сравним плотности:
p_i = \frac{m_i}{V_i}.
Чем меньше объём, тем больше плотность. Следовательно у полого шарика плотность больше, чем у сплошного.
Вернёмся к нашей задаче. Пускай шарик полый, тогда его плотность больше, чем плотность меди. Но у нас у шарика плотность меньше, чем у меди. Следовательно полым он быть не может.