Очевидно, что w1 = w2 = w, т.к. вращательное движение стержня равномерное (в условиях не говорится, что линейные скорости обоих концов меняют своё значение, значит они - постоянны) и угловая скорость всех точек в таком случае одинаковая. Запишем радиусы через длину стержня и выразим радиус одного из концов:
L = R1 + R2 => R1 = L - R2
Приравняем значение w1 к значению w2 и выразим радиус второго конца стержня:
На скользящую шайбу действуют три силы: сила тяжести, сила трения и сила реакции опоры. По третьему закону Ньютона мы знаем, что вес равен по модулю силе реакции опоры, т.к. эти две силы являются силами взаимодействия шайбы и поверхности. Для горизонтального участка направим ось Y вертикально вверх, ось Х по направлению движения шайбы. Для наклонного ось Y направим перпендикулярно поверхности, ось X вниз по склону.
1) На горизонтальной поверхности сила реакции опоры (а стало быть и вес) будет равна по модулю силе тяжести (трение не в счёт, так как его направление перпендикулярно действию этих сил). Об этом мы можем судить по тому, что шайба не ускоряется по оси Y, т.е. действие сил скомпенсировано. Итак, P=N=mg=10 (если g=10) На наклонной поверхности сила реакции опоры будет равна проекции силы тяжести на ось Y, или mgcosα, P=10*√2/2=5√2
2) На горизонтальной поверхности ускорение будет зависеть лишь от силы трения (две другие скомпенсированы). a=F/m=0.2*10/1=2
3) Обычно с улучшением качества обработки поверхности коэффициент трения и соответственно сила трения уменьшается, т.е. поверхность становится более гладкой. Однако в случае со льдом это не так. Лёд скользок потому, что при замерзании расширяется (в отличие от других материалов), и под давлением начинает таять. Таким образом, между телом и поверхностью льда всегда существует прослойка воды, по которой и осуществляется скольжение. Но на гладкий лёд будет оказываться меньшее давление, чем на неровный, в силу большей площади соприкосновения. Конечно, если лёд разбивать, то скользить он будет хуже, но бугристая ледяная поверхность более скользкая, чем ровная.
Дано:
v1 = 1 м/с
v2 = 0,5 м/с
L = 1 м
Найти:
w = ? рад/с
v = w*R => w = v/R
w1 = v1/R1
w2 = v2/R2
Очевидно, что w1 = w2 = w, т.к. вращательное движение стержня равномерное (в условиях не говорится, что линейные скорости обоих концов меняют своё значение, значит они - постоянны) и угловая скорость всех точек в таком случае одинаковая. Запишем радиусы через длину стержня и выразим радиус одного из концов:
L = R1 + R2 => R1 = L - R2
Приравняем значение w1 к значению w2 и выразим радиус второго конца стержня:
w1 = w2
v1/(L - R2) = v2/R2
L - R2 = (v1*R2)/v2
L = (v1*R2)/v2 + R2 = (v1*R2 + v2*R2)/v2
L*v2 = v1*R2 + v2*R2 = R2*(v1 + v2)
R2 = L*v2/(v1 + v2).
И т.к. w = w2, то:
w2 = v2/R2 = v2 : L*v2/(v1 + v2) = (v1 + v2)/L = (1 + 0,5)/1 = 1,5 рад/с
ответ: угловая скорость стержня равна 1,5 рад/с.