1.Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Впервые были описаны в 1675 году И. Ньютоном.
2.Размеры колонны сравнимы с длиной звуковых волн, поэтому последние огибают колонну. Кроме того, до зрителя дойдут звуковые волны отраженные от стен и потолка замкнутого зала. Световые волны по длине не сравнимы с размерами колонны, поэтому они не могут ее огибать.
3.Дифракция света. Дифракцией называется свойство световых лучей образовывать чередующиеся полосы и кольца после того, как лучи от светящейся точки или линии обойдут края непрозрачных небольших предметов (игла, волос) или пройдут через небольшие отверстия (узкая щель, сетка).
За одну секунду свободного падения, шарик пролетит расстояние
h = gt2/2 (1) и столкнется с плитой. После отскока, шарик будет двигаться под углом α = 30о к перпендикуляру, восстановленному в точку падения, под таким же углом к горизонтальной оси. Чтобы тело оказалось на плоскости в точке падения шарика, его надо бросить из точки А со скоростью vo. Воспользуемся законом сохранения механической энергии mvo2/2 = mg(H − h) + mv2/2. (2) Скорость отскока шарика от плоскости, равна скорости его падения на плоскость v = gt, a v2 = g2t2. (3) Сделав замену в уравнение (2) выразим квадрат скорости vo vo2 = g2t2 + 2g(H − h). (4) Учтем, что горизонтальная составляющая скорости в процессе полета остается постоянной vx = vcos(90° − 2α) = vsin2α, (5) запишем закон сохранения для точки A и B mvo2/2 = mgh/ + mvx2/2. (6) Подставим (1), (3), (4) и (5) в формулу (6) и после преобразования получим формулу для искомой высоты h/ = H − (gt2/2)•sin22α Подставим численные значения и найдем искомую высоту h/ = 20 − (10•12/2)•sin260° = 16,25 (м).