сила тяжести груза mg=60нmg=60н значительно больше силы, с которой надо тянуть веревку, чтобы удержать груз. это определяется существенными силами трения веревки о бревно. сначала силы трения препятствуют соскальзыванию груза под действием силы тяжести. полный расчет распределения сил трения, действующих на веревку, довольно сложен, поскольку сила натяжения веревки в местах ее соприкосновения с бревном меняется от f1f1 до mgmg. в свою очередь сила давления веревки на бревно также меняется, будучи пропорциональной в каждой точке соответствующей локальной силе натяжения веревки. соответственно и силы трения, действующие на веревку, определяются именно указанными силами давления. однако для решения достаточно заметить, что полная сила трения fтрfтр (слагающие которой пропорциональны в каждой точке силе реакции бревна) будет с соответствующими коэффициентами пропорциональна силам натяжения веревки на концах; в частности, с некоторым коэффициентом kk она будет равна большей силе натяжения: fтр=kmgfтр=kmg. это означает, что отношение большей силы натяжения к меньшей есть величина постоянная для данного расположения веревки и бревна: mg/t1=1/(1−k)mg/t1=1/(1−k), поскольку t1=mg−kmgt1=mg−kmg. когда мы хотим поднять груз, концы веревки как бы меняются местами. сила трения теперь направлена против силы t2t2 и уже не , а мешает. отношение большей силы натяжения, равной теперь t2t2, к меньшей - mgmg будет, очевидно, таким же, как и в первом случае: t2/mg=1/(1−k)=mg/t1t2/mg=1/(1−k)=mg/t1. отсюда находим, что t2=(mg)2/t1=90н источник:
сила тяжести груза mg=60нmg=60н значительно больше силы, с которой надо тянуть веревку, чтобы удержать груз. это определяется существенными силами трения веревки о бревно. сначала силы трения препятствуют соскальзыванию груза под действием силы тяжести. полный расчет распределения сил трения, действующих на веревку, довольно сложен, поскольку сила натяжения веревки в местах ее соприкосновения с бревном меняется от f1f1 до mgmg. в свою очередь сила давления веревки на бревно также меняется, будучи пропорциональной в каждой точке соответствующей локальной силе натяжения веревки. соответственно и силы трения, действующие на веревку, определяются именно указанными силами давления. однако для решения достаточно заметить, что полная сила трения fтрfтр (слагающие которой пропорциональны в каждой точке силе реакции бревна) будет с соответствующими коэффициентами пропорциональна силам натяжения веревки на концах; в частности, с некоторым коэффициентом kk она будет равна большей силе натяжения: fтр=kmgfтр=kmg. это означает, что отношение большей силы натяжения к меньшей есть величина постоянная для данного расположения веревки и бревна: mg/t1=1/(1−k)mg/t1=1/(1−k), поскольку t1=mg−kmgt1=mg−kmg. когда мы хотим поднять груз, концы веревки как бы меняются местами. сила трения теперь направлена против силы t2t2 и уже не , а мешает. отношение большей силы натяжения, равной теперь t2t2, к меньшей - mgmg будет, очевидно, таким же, как и в первом случае: t2/mg=1/(1−k)=mg/t1t2/mg=1/(1−k)=mg/t1. отсюда находим, что t2=(mg)2/t1=90н источник:
Налицо задача на использование ЗСИ (закона сохранения импульсов).
Дано:
Найти:
Так как шарики начинают движение одновременно, то их времена полёта до столкновения равны:
Направим ось Х (Ох) вертикально вниз и все дальнейшие вычисления будем писать в проекции на эту ось.
Тогда первый шарик до столкновения
(минус стоит, т.к. его бросали вверх, а значит его скорость уменьшалась за время полёта), а второй -
. Шарики столкнулись на одной высоте, а значит
, отсюда 
Нам нужно будет найти высоту
, на которой столкнулись шарики. Она будет равна пройденному первым шариком пути: 
Пусть первый шарик имел к моменту столкновения скорость
, второй -
, а получившийся в итоге кусок пластилина приобретёт скорость
направленную, предположим, вниз.
Тогда
, 
Применим ЗСИ в проекции на ось Х:
Значение скорости получилось со знаком "+", а значит мы угадали с её направлением.
Тогда, если
- скорость, с которой упадёт комок на землю, то:
ответ:
м/с